\(choa,b,c>0.cmr:\dfrac{a^8}{b^4}+\dfrac{b^8}{c^4}+\dfrac{c^8}{a^4}\ge ab^3+bc^3+ca^3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\dfrac{ab+ac}{4}=\dfrac{bc+ab}{6}=\dfrac{ca+cb}{8}=k\)
=>ab+ac=4k; bc+ab=6k; ac+bc=8k
=>ac-bc=-2k; ac+bc=8k; ab+ac=4k
=>ac=3k; bc=5k; ab=k
=>c/b=3; c/a=5
=>c=3b=5a
=>a/3=b/5=c/15
Lời giải:
Ta có:
\(ab+bc+ac=abc\Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Xét \(a^4+b^4-(ab^3+a^3b)=(a-b)(a^3-b^3)\)
\(=(a-b)^2(a^2+ab+b^2)\geq 0\forall a,b> 0\)
\(\Rightarrow a^4+b^4\geq ab^3+a^3b\)
\(\Rightarrow 2(a^4+b^4)\geq (a^3+b^3)(a+b)\)
\(\Rightarrow \frac{a^4+b^4}{ab(a^3+b^3)}\geq \frac{(a^3+b^3)(a+b)}{2ab(a^3+b^3)}=\frac{a+b}{2ab}=\frac{1}{2a}+\frac{1}{2b}\)
Thực hiện tương tự với các phân thức còn lại:
\(\Rightarrow \frac{a^4+b^4}{ab(a^3+b^3)}+\frac{b^4+c^4}{bc(b^3+c^3)}+\frac{c^4+a^4}{ca(c^3+a^3)}\geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Ta có đpcm
Dấu bằng xảy ra khi \(a=b=c=3\)
Vế trái bậc 0, vế phải bậc 1, không đồng bậc với nhau . BĐT sai ngay với \(a=9,b=3,c=6\)
Sửa: \(\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}\geq \frac{3(a^2+b^2+c^2)}{ab+bc+ac}\)
Chứng minh:
Áp dụng BĐT Cauchy-Schwarz:
\(\text{VT}=\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}=\frac{a^4}{a^2bc}+\frac{b^4}{b^2ac}+\frac{c^4}{c^2ab}\)
\(\geq \frac{(a^2+b^2+c^2)^2}{a^2bc+b^2ac+c^2ab}=\frac{(a^2+b^2+c^2)^2}{abc(a+b+c)}(1)\)
Ta có kết quả quen thuộc của BĐT Cauchy là:
\(a^2+b^2+c^2\geq ab+bc+ac\)
Và: \((ab+bc+ac)^2\geq 3abc(a+b+c)\)
Do đó: \(a^2+b^2+c^2\geq ab+bc+ac\geq \frac{3abc(a+b+c)}{ab+bc+ac}(2)\)
Từ \((1);(2)\Rightarrow \text{VT}\geq \frac{(a^2+b^2+c^2).3abc(a+b+c)}{(ab+bc+ac)abc(a+b+c)}=\frac{3(a^2+b^2+c^2)}{ab+bc+ac}\) (đpcm)
Dấu bằng xảy ra khi $a=b=c$
Áp dụng BĐT AG-GM:
\(\dfrac{a^3}{a^2+ab+b^2}\ge\dfrac{a^3}{a^2+\dfrac{a^2+b^2}{2}+b^2}=\dfrac{a^3}{\dfrac{3}{2}\left(a^2+b^2\right)}\)
Cmtt \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b^3}{b^2+bc+c^2}\ge\dfrac{b^3}{\dfrac{3}{2}\left(b^2+c^2\right)}\\\dfrac{c^3}{c^2+ac+a^2}\ge\dfrac{c^3}{\dfrac{3}{2}\left(c^2+a^2\right)}\end{matrix}\right.\)
Cộng vế theo vế của bất đẳng thức:
\(\Leftrightarrow VT\ge\dfrac{2}{3}\left(\dfrac{a^3}{a^2+b^2}+\dfrac{b^3}{b^2+c^2}+\dfrac{c^3}{c^2+a^2}\right)\)
Tiếp tục áp dụng BĐT AG-GM:
\(\dfrac{a^3}{a^2+b^2}=\dfrac{a\left(a^2+b^2\right)-ab^2}{a^2+b^2}=a-\dfrac{ab^2}{a^2+b^2}\ge a-\dfrac{ab^2}{2ab}=a-\dfrac{b}{2}\)
Cmtt\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b^3}{b^2+c^2}\ge b-\dfrac{c}{2}\\\dfrac{c^3}{c^2+a^2}\ge c-\dfrac{a}{2}\end{matrix}\right.\)
Cộng vế theo vế
\(\Leftrightarrow VT\ge\dfrac{2}{3}\left(\dfrac{a^3}{a^2+b^2}+\dfrac{b^3}{b^2+c^2}+\dfrac{c^3}{c^2+a^2}\right)\\ \ge\dfrac{2}{3}\left(a-\dfrac{b}{2}+b-\dfrac{c}{2}+c-\dfrac{a}{2}\right)=\dfrac{2}{3}\left(a+b+c-\dfrac{a+b+c}{2}\right)=\dfrac{a+b+c}{3}\)
\(\dfrac{a^3}{a^2+ab+b^2}=a-\dfrac{ab\left(a+b\right)}{a^2+ab+b^2}\ge a-\dfrac{ab\left(a+b\right)}{3\sqrt[3]{a^2.ab.b^2}}=a-\dfrac{a+b}{3}=\dfrac{2a-b}{3}\)
Tương tự và cộng lại ta sẽ có đpcm
BĐT bị ngược dấu, BĐT đúng phải là:
\(\dfrac{a}{ac+4}+\dfrac{b}{ab+4}+\dfrac{c}{bc+4}\le\dfrac{a^2+b^2+c^2}{16}\)