K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 8 2017

Bài 3:

a) Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{xy}+\frac{2}{x^2+y^2}=2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\) \(\geq 2.\frac{(1+1)^2}{2xy+x^2+y^2}=\frac{8}{(x+y)^2}=8\)

Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)

b) Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{xy}+\frac{1}{x^2+y^2}=\frac{1}{2xy}+\left (\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\geq \frac{1}{2xy}+\frac{(1+1)^2}{2xy+x^2+y^2}\)

\(=\frac{1}{2xy}+\frac{4}{(x+y)^2}\)

Theo BĐT AM-GM:

\(xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}\Rightarrow \frac{1}{2xy}\geq 2\)

Do đó \(\frac{1}{xy}+\frac{1}{x^2+y^2}\geq 2+4=6\)

Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)

AH
Akai Haruma
Giáo viên
8 tháng 8 2017

Bài 1: Thiếu đề.

Bài 2: Sai đề, thử với \(x=\frac{1}{6}\)

Bài 4 a) Sai đề với \(x<0\)

b) Áp dụng BĐT AM-GM:

\(x^4-x+\frac{1}{2}=\left (x^4+\frac{1}{4}\right)-x+\frac{1}{4}\geq x^2-x+\frac{1}{4}=(x-\frac{1}{2})^2\geq 0\)

Dấu bằng xảy ra khi \(\left\{\begin{matrix} x^4=\frac{1}{4}\\ x=\frac{1}{2}\end{matrix}\right.\) (vô lý)

Do đó dấu bằng không xảy ra , nên \(x^4-x+\frac{1}{2}>0\)

Bài 6: Áp dụng BĐT AM-GM cho $6$ số:

\(a^2+b^2+c^2+d^2+ab+cd\geq 6\sqrt[6]{a^3b^3c^3d^3}=6\)

Do đó ta có đpcm

Dấu bằng xảy ra khi \(a=b=c=d=1\)

10 tháng 8 2017

5) a) Đặt b+c-a=x;a+c-b=y;a+b-c=z thì 2a=y+z;2b=x+z;2c=x+y

Ta có:

\(\dfrac{2a}{b+c-a}+\dfrac{2b}{a+c-b}+\dfrac{2c}{a+b-c}=\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{x+y}{z}=\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)\ge6\)

Vậy ta suy ra đpcm

b) Ta có: a+b>c;b+c>a;a+c>b

Xét: \(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+b+a+b}=\dfrac{1}{a+b}\)

.Tương tự:

\(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{b+c};\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+c}\)

Vậy ta có đpcm

10 tháng 8 2017

6) Ta có:

\(a^2+b^2+c^2+d^2+ab+cd\ge2ab+2cd+ab+cd=3\left(ab+cd\right)\)

\(ab+cd=ab+\dfrac{1}{ab}\ge2\)

Suy ra đpcm

8 tháng 3 2017

Xét: \(\dfrac{a+1}{b^2+1}+\dfrac{b+1}{c^2+1}+\dfrac{c+1}{a^2+1}\)

\(\Leftrightarrow\dfrac{a}{b^2+1}+\dfrac{b}{c^2+1}+\dfrac{c}{a^2+1}+\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}\)

\(\Leftrightarrow a-\dfrac{ab^2}{b^2+1}+b-\dfrac{bc^2}{c^2+1}+c-\dfrac{ca^2}{a^2+1}+1-\dfrac{a^2}{a^2+1}+1-\dfrac{b^2}{b^2+1}+1-\dfrac{c^2}{c^2+1}\)

\(\Leftrightarrow3-\left(\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\right)+3-\left(\dfrac{a^2}{a^2+1}+\dfrac{b^2}{b^2+1}+\dfrac{c^2}{c^2+1}\right)\)

Xét \(3-\left(\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\right)\)

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{ab^2}{b^2+1}\le\dfrac{ab^2}{2b}=\dfrac{ab}{2}\\\dfrac{bc^2}{c^2+1}\le\dfrac{bc^2}{2c}=\dfrac{bc}{2}\\\dfrac{ca^2}{a^2+1}\le\dfrac{ca^2}{2a}=\dfrac{ca}{2}\end{matrix}\right.\)

\(\Rightarrow\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\le\dfrac{ab+bc+ca}{2}\)

\(\Rightarrow3-\left(\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\right)\ge3-\dfrac{ab+bc+ca}{2}\) ( 1 )

Theo hệ quả của bất đẳng thức Cauchy ta có

\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Rightarrow\dfrac{3}{2}\le3-\dfrac{ab+bc+ca}{2}\) ( 2 )

Từ ( 1 ) và ( 2 )

\(\Rightarrow3-\left(\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\right)\ge\dfrac{3}{2}\) ( 3 )

Xét \(3-\left(\dfrac{a^2}{a^2+1}+\dfrac{b^2}{b^2+1}+\dfrac{c^2}{c^2+1}\right)\)

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a^2}{a^2+1}\le\dfrac{a^2}{2a}=\dfrac{a}{2}\\\dfrac{b^2}{b^2+1}\le\dfrac{b^2}{2b}=\dfrac{b}{2}\\\dfrac{c^2}{c^2+1}\le\dfrac{c^2}{2c}=\dfrac{c}{2}\end{matrix}\right.\)

\(\Rightarrow\dfrac{a^2}{a^2+1}+\dfrac{b^2}{b^2+1}+\dfrac{c^2}{c^2+1}\le\dfrac{a+b+c}{2}=\dfrac{3}{2}\)

\(\Rightarrow3-\left(\dfrac{a^2}{a^2+1}+\dfrac{b^2}{b^2+1}+\dfrac{c^2}{c^2+1}\right)\ge3-\dfrac{3}{2}=\dfrac{3}{2}\) ( 4 )

Từ ( 3 ) và ( 4 ) cộng theo từng vế

\(\Rightarrow VT\ge\dfrac{3}{2}+\dfrac{3}{2}=3\)

\(\Leftrightarrow\dfrac{a+1}{b^2+1}+\dfrac{b+1}{c^2+1}+\dfrac{c+1}{a^2+1}\ge3\)

\(\Rightarrow\) ( đpcm )

27 tháng 5 2018

Mashiro Shiina Akai Haruma GIÚP EM VỚI

3 tháng 1 2019

3/ Áp dụng bất đẳng thức AM-GM, ta có :

\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\sqrt{\dfrac{\left(ab\right)^2}{\left(bc\right)^2}}=\dfrac{2a}{c}\)

\(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge2\sqrt{\dfrac{\left(bc\right)^2}{\left(ac\right)^2}}=\dfrac{2b}{a}\)

\(\dfrac{c^2}{a^2}+\dfrac{a^2}{b^2}\ge2\sqrt{\dfrac{\left(ac\right)^2}{\left(ab\right)^2}}=\dfrac{2c}{b}\)

Cộng 3 vế của BĐT trên ta có :

\(2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)

\(\Leftrightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\left(\text{đpcm}\right)\)

AH
Akai Haruma
Giáo viên
4 tháng 1 2019

Bài 1:

Áp dụng BĐT AM-GM ta có:

\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{1}{2\sqrt{a^2.bc}}+\frac{1}{2\sqrt{b^2.ac}}+\frac{1}{2\sqrt{c^2.ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2abc}\)

Tiếp tục áp dụng BĐT AM-GM:

\(\sqrt{bc}+\sqrt{ac}+\sqrt{ab}\leq \frac{b+c}{2}+\frac{c+a}{2}+\frac{a+b}{2}=a+b+c\)

Do đó:

\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\leq \frac{a+b+c}{2abc}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$

AH
Akai Haruma
Giáo viên
8 tháng 1 2019

Bài 1:

Áp dụng BĐT AM-GM cho các số thực dương ta có:

\(\frac{x^2}{y+z}+\frac{y+z}{4}\geq 2\sqrt{\frac{x^2}{4}}=x\)

\(\frac{y^2}{x+z}+\frac{x+z}{4}\geq 2\sqrt{\frac{y^2}{4}}=y\)

\(\frac{z^2}{x+y}+\frac{x+y}{4}\geq 2\sqrt{\frac{z^2}{4}}=z\)

Cộng theo vế:

\(\Rightarrow M+\frac{y+z}{4}+\frac{x+z}{4}+\frac{x+y}{4}\geq x+y+z\)

\(\Leftrightarrow M\geq \frac{x+y+z}{2}=\frac{2}{2}=1\)

Vậy GTNN của $M$ là $1$. Đẳng thức xảy ra tại $x=y=z=\frac{2}{3}$

AH
Akai Haruma
Giáo viên
8 tháng 1 2019

Bài 2:

\(\text{VT}=(a+1)-\frac{b^2(a+1)}{b^2+1}+(b+1)-\frac{c^2(b+1)}{c^2+1}+(c+1)-\frac{a^2(c+1)}{a^2+1}\)

\(=(a+b+c+3)-\left(\frac{b^2(a+1)}{b^2+1}+\frac{c^2(b+1)}{c^2+1}+\frac{a^2(c+1)}{a^2+1}\right)\)

\(=6-M(*)\)

Xét \(M=\frac{b^2(a+1)}{b^2+1}+\frac{c^2(b+1)}{c^2+1}+\frac{a^2(c+1)}{a^2+1}\). Áp dụng BĐT AM-GM:

\(M\leq \frac{b^2(a+1)}{2b}+\frac{c^2(b+1)}{2c}+\frac{a^2(c+1)}{2a}=\frac{ab+bc+ac+a+b+c}{2}=\frac{ab+bc+ac+3}{2}\)

\(\leq \frac{\frac{(a+b+c)^2}{3}+3}{2}=3(**)\)

Từ \((*); (**)\Rightarrow \text{VT}=6-M\geq 6-3=3\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=1$

6 tháng 4 2017

Bài 1:

Dự đoán dấu "=" xảy ra khi \(a=b=c=1\) ta tính được giá trị là \(9\)

Ta sẽ chứng minh nó là GTLN

Thật vậy ta cần chứng minh

\(\Sigma\dfrac{11a+4b}{4a^2-ab+2b^2}\le\dfrac{3\left(ab+ac+bc\right)}{abc}\)

\(\LeftrightarrowΣ\left(\dfrac{3}{a}-\dfrac{11a+4b}{4a^2-ab+2b^2}\right)\ge0\)

\(\LeftrightarrowΣ\dfrac{\left(a-b\right)\left(a-6b\right)}{a\left(4a^2-ab+2b^2\right)}\ge0\)

\(\LeftrightarrowΣ\left(\dfrac{\left(a-b\right)\left(a-6b\right)}{a\left(4a^2-ab+2b^2\right)}+\dfrac{1}{b}-\dfrac{1}{a}\right)\ge0\)

\(\LeftrightarrowΣ\dfrac{\left(a-b\right)^2\left(a+b\right)}{ab\left(4a^2-ab+2b^2\right)}\ge0\) (luôn đúng)

Bài 2:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(a^5+b^2+c^2\right)\left(\dfrac{1}{a}+b^2+c^2\right)\ge\left(a^2+b^2+c^2\right)^2\)

\(\Rightarrow\dfrac{1}{a^5+b^2+c^2}\le\dfrac{\dfrac{1}{a}+b^2+c^2}{\left(a^2+b^2+c^2\right)^2}\)

Tương tự rồi cộng theo vế ta có:

\(Σ\dfrac{1}{a^5+b^2+c^2}\le\dfrac{Σ\dfrac{1}{a}+2Σa^2}{\left(a^2+b^2+c^2\right)^2}\)

Ta chứng minh \(Σ\dfrac{1}{a}+2\left(a^2+b^2+c^2\right)\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\) - BĐT cuối đúng

Vậy ta có ĐPCM. Dấu "=" xảy ra khi \(a=b=c=1\)

Bài 3:

Từ \(a+b+c=3abc\Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=3\)

Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow xy+yz+xz=3\) và BĐT cần chứng minh là

\(x^3+y^3+z^3\ge3\). Áp dụng BĐT AM-GM ta có:

\(x^3+x^3+1\ge3\sqrt[3]{x^3\cdot x^3\cdot1}=3x^2\)

Tương tự có: \(y^3+y^3+1\ge3y^2;z^3+z^3+1\ge3z^2\)

Cộng theo vế 3 BĐT trên ta có:

\(2\left(x^3+y^3+z^3\right)+3\ge3\left(x^2+y^2+z^2\right)\)

Lại có BĐT quen thuộc \(x^2+y^2+z^2\ge xy+yz+xz\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge3\left(xy+yz+xz\right)=9\left(xy+yz+xz=3\right)\)

\(\Rightarrow2\left(x^3+y^3+z^3\right)+3\ge9\Rightarrow2\left(x^3+y^3+z^3\right)\ge6\)

\(\Rightarrow x^3+y^3+z^3\ge3\). BĐT cuối đúng nên ta có ĐPCM

Đẳng thức xảy ra khi \(a=b=c=1\)

T/b:Vâng, rất giỏi :GT8:

4 tháng 4 2017

lần sau đăng từng câu 1 dc ko bn :)