tìm tất cả các đa thức P(x) thoả mãn \(x.P\left(x-1\right)\left(x-26\right)P\left(x\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Để tìm các đa thức P(x) thỏa mãn điều kiện P(2014) = 2046 và P(x) = P(x^2 + 1) - 33 + 32, ∀x ≥ 0, ta có thể sử dụng phương pháp đệ quy. Bước 1: Xác định bậc của đa thức P(x). Vì không có thông tin về bậc của đa thức, chúng ta sẽ giả sử nó là một hằng số n. Bước 2: Xây dựng công thức tổng quát cho đa thức P(x). Với bậc n đã xác định, ta có: P(x) = a_n * x^n + a_{n-1} * x^{n-1} + ... + a_0 Bước 3: Áp dụng điều kiện để tìm các hệ số a_i. Thay x = 2014 vào biểu thức và giải phương trình: P(2014) = a_n * (2014)^n + a_{n-1} * (2014)^{n-1} + ... + a_0 = 2046 Giải phương trình này để tìm các giá trị của các hệ số. Bước 4: Áp dụng công thức tái lập để tính toán các giá trị tiếp theo của P(x): P(x) = P(x^2+1)-33+32 Áp dụng công thức này lặp lại cho đến khi đạt được kết quả cuối cùng. 2. Để tìm các đa thức P(x) ∈ Z[x] bậc n thỏa mãn điều kiện [P(2x)]^2 = 16P(x^2), ∀x ∈ R, ta có thể sử dụng phương pháp đệ quy tương tự như trên. Bước 1: Xác định bậc của đa thức P(x). Giả sử bậc của P(x) là n. Bước 2: Xây dựng công thức tổng quát cho P(x): P(x) = a_n * x^n + a_{n-1} * x^{n-1} + ... + a_0 Bước 3: Áp dụng điều kiện để tìm các hệ số a_i. Thay x = 2x vào biểu thức và giải phương trình: [P(2x)]^2 = (a_n * (2x)^n + a_{n-1} * (2x)^{n-1} + ... + a_0)^2 = 16P(x^2) Giải phương trình này để tìm các giá trị của các hệ số. Bước 4: Áp dụng công thức tái lập để tính toán các giá trị tiếp theo của P(x): [P(4x)]^2 = (a_n * (4x)^n + a_{n-1} * (4x)^{n-1} + ... + a_0)^2 = 16P(x^2) Lặp lại quá trình này cho đến khi đạt được kết quả cuối cùng.
(2x-y+7)^2022>=0 với mọi x,y
|x-3|^2023>=0 với mọi x,y
Do đó: (2x-y+7)^2022+|x-3|^2023>=0 với mọi x,y
mà \(\left(2x-y+7\right)^{2022}+\left|x-3\right|^{2023}< =0\)
nên \(\left(2x-y+7\right)^{2022}+\left|x-3\right|^{2023}=0\)
=>2x-y+7=0 và x-3=0
=>x=3 và y=2x+7=2*3+7=13
Thế \(\left(x;y\right)=\left(0;-1\right)\) vào ta được \(f\left(0\right)=0\)
Thế \(y=0\Rightarrow f\left(f\left(x\right)\right)=x\)
Do vế phải của biểu thức trên là hàm bậc nhất \(\Rightarrow\) có tập giá trị là \(Z\Rightarrow f\) là toàn ánh
Giả sử tồn tại \(x_1;x_2\) sao cho \(f\left(x_1\right)=f\left(x_2\right)=a\Rightarrow\left\{{}\begin{matrix}f\left(f\left(x_1\right)\right)=x_1\Rightarrow f\left(a\right)=x_1\\f\left(f\left(x_2\right)\right)=x_2\Rightarrow f\left(a\right)=x_2\end{matrix}\right.\)
\(\Rightarrow x_1=x_2\Rightarrow f\) là đơn ánh \(\Rightarrow f\) là song ánh
Thế \(\left(x;y\right)=\left(1;-1\right)\Rightarrow f\left(0\right)=1+f\left(-1\right)\Rightarrow f\left(-1\right)=-1\)
Thế \(\left(x;y\right)=\left(-1;f\left(1\right)\right)\Rightarrow f\left(f\left(-1\right)+f^2\left(1\right)\right)=-1+f\left(f\left(1\right)\right)\)
\(\Rightarrow f\left(f^2\left(1\right)-1\right)=-1+1=0\Rightarrow f^2\left(1\right)-1=0\) (do \(f\) song ánh)
\(\Rightarrow f^2\left(1\right)=1\Rightarrow f\left(1\right)=1\) (cũng vẫn do \(f\) song ánh nên \(f\left(1\right)\ne-1\) do \(f\left(-1\right)=-1\))
Thế \(\left(x;y\right)=\left(1;x\right)\Rightarrow f\left(1+x\right)=1+f\left(x\right)\) (1)
Từ đẳng thức trên, do \(x\in Z\) nên ta có thể quy nạp để tìm hàm \(f\):
- Với \(x=0\Rightarrow f\left(1\right)=1\)
- Với \(x=1\Rightarrow f\left(2\right)=f\left(1+1\right)=1+f\left(1\right)=2\)
- Giả sử \(f\left(k\right)=k\), ta cần chứng minh \(f\left(1+k\right)=1+k\), nhưng điều này hiển nhiên đúng theo (1)
Vậy \(f\left(x\right)=x\) là hàm cần tìm
Giải :
Vì :
x.P(x+1) = ( x - 2 ) .P(x) với mọi x . Nên :
* Nếu cho x = 0 , ta có :
0.P(0+1) = (0-2) . P(0)
0 = -2 . P( 0)
=> P ( 0 ) = 0
=> x = 0 là 1 nghiệm của đt P ( x )
* Nếu cho x = 2 , ta có :
2 . P ( 2 + 1 ) = ( 2 - 2 ) . P ( 2 )
2 . P ( 3 ) = 0
=> p ( 3 ) = 0
=> x = 3 là 1 nghiệm của đt p( x )
Vậy đt P ( x ) có ít nhất 2 nghiệm là x = 0 và x = 3 .
Bài 1:
Cho $y=0$ thì: $f(x^3)=xf(x^2)$
Tương tự khi cho $x=0$
$\Rightarrow f(x^3-y^3)=xf(x^2)-yf(y^2)=f(x^3)-f(y^3)$
$\Rightarrow f(x-y)=f(x)-f(y)$ với mọi $x,y\in\mathbb{R}$
Cho $x=0$ thì $f(-y)=0-f(y)=-f(y)$
Cho $y\to -y$ thì: $f(x+y)=f(x)-f(-y)=f(x)--f(y)=f(x)+f(y)$ với mọi $x,y\in\mathbb{R}$
Đến đây ta có:
$f[(x+1)^3+(x-1)^3]=f(2x^3+6x)=f(2x^3)+f(6x)$
$=2f(x^3)+6f(x)=2xf(x^2)+6f(x)$
$f[(x+1)^3+(x-1)^3]=f[(x+1)^3-(1-x)^3]$
$=(x+1)f((x+1)^2)-(1-x)f((1-x)^2)$
$=(x+1)f(x^2+2x+1)+(x-1)f(x^2-2x+1)$
$=(x+1)[f(x^2)+2f(x)+f(1)]+(x-1)[f(x^2)-2f(x)+f(1)]$
$=2xf(x^2)+4f(x)+2xf(1)$
Do đó:
$2xf(x^2)+6f(x)=2xf(x^2)+4f(x)+2xf(1)$
$2f(x)=2xf(1)$
$f(x)=xf(1)=ax$ với $a=f(1)$
\(f\left(x^5+y^5+y\right)=x^3f\left(x^2\right)+y^3f\left(y^2\right)+f\left(y\right)\)
Sửa lại đề câu 2 !!