Cho tam giác ABC cân tại A có \(\widehat{A}\)=\(30^o\),BC = 20 cm. Trên cạnh AC lấy điểm C sao cho \(_{\widehat{CDB}=60^o}\).Tính độ dài AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC cân tại A, có góc A bằng 30 độ, suy ra góc B và C đều bằng 75 độ
vẽ hình ra nhé, kéo dài BD
từ A hạ đường vuông góc với BD cắt BD tại E
từ A cũng hạ đường vuông góc với BC cắt BC tại F
do góc BDC = 60 độ (đề bài cho)
nên góc ABE bằng 75-60=15 độ
xét 2 tam giác ABE và ABF
- AB chung
- góc BAF = góc ABE = 15 độ
- góc AFB = góc AEB = 90 độ
suy ra 2 tam giác bằng nhau (góc - cạnh - góc)
suy ra AE = BF = 1/2 BC = 1cm
xét tam giác nhỏ ADF ta có
- tam giác này vuông tại F
- góc DAF = 45 độ
suy ra tam giác này vuông cân tại F
suy ra AD = căn 2 AF = căn 2 cm
giải thích thêm chỗ góc DAF = 45 độ
do hai tam giác lớn cm bên trên bằng nhau suy ra góc BAF = góc ABE = 75 độ
góc BAC = 30 độ (đề bài cho)
suy ra góc DAF = 45 độ
P/s: chưa chắc đúng nha
Chúc các bn hok tốt !
ΔABC cân tại A mà BACˆ=300
⇒ABCˆ=ACBˆ=1800−3002=750
Từ A, kẻ AE⊥BD (E∈BD)
kẻ AF⊥BC (F∈BC)
Vì CBDˆ=600(giả thiết)
⇒ABEˆ=750−600=150
Xét ΔABE và ΔBAF có:
AFBˆ=AEBˆ(=900)
Cạnh AB chung
BAFˆ=AEBˆ(=150)
⇒ΔABE=ΔBAF (g.c.g)
⇒AE=BF=12BC=1cm
Mặt khác, trong ΔBDC có:
DBCˆ=600
DCBˆ=750
⇒BDCˆ=450
⇒BDCˆ=ADEˆ (đối đỉnh)
Mà ΔADE vuông tại E
⇒ΔADE vuông cân tại E
⇒AE=ED
Mà AE=BF=1cm (cmt)
⇒ED=1cm
Áp dụng định lí Pytago, ta có:
AD2=EA2+ED2
⇒AD2=12+12=1+1=2
⇒AD=2–√
Vậy AD=2–√
Đỗ Hoài Chinh mình không hiểu chỗ AF=BF=12BC=1cm
đáng lẽ 12BC phải bằng 24cm chứ?
giải thích hộ mình nhé
Tam giác ABC cân tại A, có góc A bằng 30 độ, suy ra góc B và C đều bằng 75 độ
vẽ hình ra nhé, kéo dài BD
từ A hạ đường vuông góc với BD cắt BD tại E
từ A cũng hạ đường vuông góc với BC cắt BC tại F
do góc BDC = 60 độ (đề bài cho)
nên góc ABE bằng 75-60=15 độ
xét 2 tam giác ABE và ABF
- AB chung
- góc BAF = góc ABE = 15 độ
- góc AFB = góc AEB = 90 độ
suy ra 2 tam giác bằng nhau (góc - cạnh - góc)
suy ra AE = BF = 1/2 BC = 1cm
xét tam giác nhỏ ADF ta có
- tam giác này vuông tại F
- góc DAF = 45 độ
suy ra tam giác này vuông cân tại F
suy ra AD = căn 2 AF = căn 2 cm
giải thích thêm chỗ góc DAF = 45 độ
do hai tam giác lớn cm bên trên bằng nhau suy ra góc BAF = góc ABE = 75 độ
góc BAC = 30 độ (đề bài cho)
suy ra góc DAF = 45 độ
Vẽ \(\Delta BIC\) vuông can có đáy BC ( I và A cùng phia đối với BC ) . Ta có :
\(\widehat{CBI}=45^o,\widehat{IBD}=15^o,\widehat{DBA}=15^o\)
\(\Delta IAB=\Delta IAC\left(c.c.c\right)\)nên \(\widehat{IAB}=\widehat{IAC}=15^o\)
\(\Delta IAB=\Delta DBA\left(g.c.g\right)\)nên \(IB=AD\)
Xét \(\Delta BIC\)vuông cân , ta có :
\(BI^2+IC^2=BC^2=2^2=4\)
\(\Rightarrow2BI^2=4\)
\(\Rightarrow BI=\sqrt{2}\left(cm\right)\)
Do đó \(AD=\sqrt{2}\left(cm\right)\)
Chúc bạn học tốt !!!
a) Xét tam giác ABC có:
\(\begin{array}{l}\widehat A + \widehat B + \widehat C = {180^o}\\ = > {90^o} + {60^o} + \widehat C = {180^o}\\ = > \widehat C = {30^o}\end{array}\)
Xét tam giác CAM có \(\widehat A = \widehat C = {30^o}\)
=>Tam giác CAM cân tại M.
b) Xét tam giác ABM có:
\(\begin{array}{l}\widehat C + \widehat {CMA} + \widehat {CAM} = {180^o}\\ = > {30^o} + \widehat {CMA} + {30^o} = {180^o}\\ = > \widehat {CMA} = {120^o}\\ = > \widehat {BMA} = {180^o} - \widehat {CMA} = {180^o} - {120^o} = {60^o}\end{array}\)
Xét tam giác ABM có:
\(\begin{array}{l}\widehat B + \widehat {BMA} + \widehat {BAM} = {180^o}\\ = > {60^o} + {60^o} + \widehat {BAM} = {180^o}\\ = > \widehat {BAM} = {60^o}\end{array}\)
Do \(\widehat {BAM} = \widehat {BMA} = \widehat {ABM} = {60^o}\) nên tam giác ABM đều.
c) Vì \(\Delta ABM\) đều nên \(AB = BM = AM\)
Mà \(\Delta CAM\) cân tại M nên MA = MC
Do đó, MB = MC. Mà M nằm giữa B và C
=> M là trung điểm của BC.