Viết biểu thức sau dưới dạng tích của một đa thức
(2x+3)2trừ y2
giúp em với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=\left(3+x\right)\left(9-3x+x^2\right)\\ b,=\left(4x+0,1\right)\left(16x^2-0,4x+0,01\right)\\ c,=\left(2-3x\right)\left(4+6x+9x^2\right)\\ d,=\left(\dfrac{x}{5}-\dfrac{y}{3}\right)\left(\dfrac{x^2}{25}+\dfrac{xy}{15}+\dfrac{y^2}{9}\right)\)
`a, (2x+3)^2 = 4x^2 + 12x + 9`
`b, (3x-2)^3 = 27x^3 - 54x^2 + 36x - 8`
2:
-8x^6-12x^4y-6x^2y^2-y^3
=-(8x^6+12x^4y+6x^2y^2+y^3)
=-(2x^2+y)^3
3:
=(1/3)^2-(2x-y)^2
=(1/3-2x+y)(1/3+2x-y)
Đề bài không chính xác, biểu thức này không viết được dưới dạnh tích
a: \(x^3+\left(2y\right)^3=\left(x+2y\right)\left[x^2-x\cdot2y+\left(2y\right)^2\right]\)
\(=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)
b: \(\left(2x\right)^3-y^3\)
\(=\left(2x-y\right)\left[\left(2x\right)^2+2x\cdot y+y^2\right]\)
\(=\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(a,(x^3-x+1)(2x+1)+(x-1)(x+2)\)
\(=2x^4-2x^2+2x+x^3-x+1+x^2-x+2x-2\)
\(=2x^4+x^3+(-2x^2+x^2)+(2x-x-x+2x)+(1-2)\)
\(=2x^4+x^3-x^2+2x-1\)
\(b,(2x+a)(2x-3a)-5a(x+3)\)
\(=4x^2+2ax-6ax-3a^2-5ax-15a\)
\(=4x^2+(2ax-6ax-5ax)-3a^2-15a\)
\(=4x^2-9ax-3a^2-15a\)
Chúc bạn học tốt
a, \(\left(x^3-x+1\right)\left(2x+1\right)+\left(x-1\right)\left(x+2\right)\)
\(=2x^4+x^3-2x^2-x+2x+1+x^2+2x-x-2\)
\(=2x^4+x^3-x^2+2x-1\)
b, \(\left(2x+a\right)\left(2x-3a\right)-5a\left(x+3\right)\)
\(=4x^2-6xa+2ax-3a^2-5ax-15a\)
\(=4x^2-9ax-3a^2-15a\)
A=x^2+2(x^2+2x+1)+3(x^2+4x+4)+4(x^2+6x+9)
=x^2+2x^2+4x+2+3x^2+12x+12+4x^2+24x+36
=10x^2+40x+50
=(9x^2+30x+25)+(x^2+10x+25)
=(3x+5)^2+(x+5)^2
\(\left(2x+3\right)^2-y^2=\left(2x+y+3\right)\left(2x-y+3\right)\)