K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2019

 Bài làm :

 (2n+5)2-25  = (2n+5)2-25

                    = (2n+5) . (2n+5) - 25

                    = (2n.2n+2n. 5) + (5.2n + 5.5)-25

                    = (2n2+ 10n) + (10n+25)-25

                     = 2n2 + 10n '+ 10n + 25 - 25

                     = 2n2  + (10n+10n) +0

                     = 2n2   + 10n .2 

                     = 2n2    + 20n 

                     =( 22.n2) +( 22.5.n)

                     = 4.n.n + 4.5.n

                     = 4.n.n + 4 .(4+1) .n

                     = 4.n.n + (4.4 + 4).n

                     = 4.n.n + 4.4.n + 4.n

                     = (4.n.n +4.n.1) + 4.4.n

                     = 4n.(n+1) + 42.n

                     = 4n.(n+1) + 8.2.n

                     = 4n.2.(n+1)+8n

                     =  8n. (n+1) +8n                   

       Vì \(\hept{\begin{cases}8n.\left(n+1\right)⋮8\\8n⋮8\end{cases}}\)             => 8n.(n+1)+8n\(⋮\)8 => (2n+5)2-25\(⋮\)8

Vậy (2n+5)2-25\(⋮\)8

Bài 1:

Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)

\(=2n^3+2n^2-2n^3-2n^2+6n\)

\(=6n⋮6\)

2 tháng 10 2021

1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)

2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)

17 tháng 6 2016

A = n2(n + 1) + 2n(n+1) = n(n+1)(n+2)

Ta thấy A là tích của 3 số tự nhiên liên tiếp nên nó chia hết cho 3

Và n(n+1) luôn chia hết cho 2 vì là tích của 2 số tự nhiên liên tiếp nên A chia hết cho 2.

Số A vừa chia hết cho 2 vừa chia hết cho 3 nên A chia hết cho 2*3 = 6 . ĐPCM

17 tháng 6 2016

Đinh Thùy Linh Bạn cần bổ sung thêm nữa : 

\(\left(2,3\right)=1\)

A=3n(n^2+674)

TH1: n=3k

=>A=3*3k(n^2+674)=9k(n^2+674) chia hết cho 9

TH2: n=3k+1

=>A=3(3k+1)(9k^2+6k+1+674)

=3(3k+1)(9k^2+6k+675)

=9(3k+1)(3k^2+2k+225) chia hết cho 9

TH3: n=3k+2

=>A=3(3k+2)(9k^2+12k+4+674)

=3(3k+2)(9k^2+12k+678)

=9(3k+2)(3k^2+4k+226) chia hết cho 9

16 tháng 11 2021

Đây là tích 4 số nguyên liên tiếp nên chia hết cho \(1\cdot2\cdot3\cdot4=24\)

Mà 24 chia hết cho 3 và 8 nên n(n+1)(n+2)(n+3) chia hết cho 3 và 8

1 tháng 11 2015

Bạn vào câu hỏi tương tự nha !!! Tích mình nhé !

  • thutrangdoan289
  • 18/12/2019

Bài 5:

a) Chứng minh (2n+5)2−25(2n+5)2−25 chia hết cho 44 với mọi n∈Z.n∈Z.

Ta có: (2n+5)2−25=4n2+20n+25−25=4n2+20n=4n(n+5).(2n+5)2−25=4n2+20n+25−25=4n2+20n=4n(n+5).

Vì 4⋮4⇒4n(n+5)⋮4∀n∈Z.

# Chúc bạn học tốt!

19 tháng 9 2016

a) (4n+3)^2-25=(4n+3+5)(4n-3+5)=(4n+8)(4n-2)=16n^2-8n+32n-16

Vì 16n^2 chia hết cho 8;8n chia hết cho 8;32n chia hết cho 8;16 chia hết cho 8

=>16n^2-8n+32n-16 chia hết cho 8

b)(2n+3)^2-9

=(2n+3-3)(2n+3+3)

=2n(2n+6)=4n^2+12n

Vì 4n^2 chia hết cho 4,12n chia hết cho 4=>4n^2+12n chia hết cho 4

BN thử vào câu hỏi tương tự xem có k?

Nếu có thì bn xem nhé!

Nếu k thì xin lỗi đã làm phiền bn

Hội con 🐄 chúc bạn học tốt!!!