K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2018

Ta có 2( xy -x2 -y +1008) = y2 +2018

=> 4( xy -x2 -y +1008) = 2(y2 +2018)

=> 4xy - 4x2 -4y + 4032 = 2y2 + 4036

=> 2y2 +4036 -4xy +4x2 +4y - 4032 = 0

=> (y2 -4xy + 4x2) +(y2 +4y +4) = 0

=> (y-2x)2 +(y +2)2 = 0

vì (y-2x)2 và (y+2)2 \(\ge\) 0 với mọi x,y

=> \(\left\{{}\begin{matrix}y-2x=0\Rightarrow y=2x\Rightarrow x=-1\\y+2=0\Rightarrow y=-2\end{matrix}\right.\)

Vậy x=-1 ,y=-2

2(xy-x2-y+1008)=y2+2018

<=> 2y2+4036-4xy+4x2+4y-4032=0

<=> (y2-4xy+4x2)+(y2+4y+4)=0

<=> (y-2x)2+(y+2)2=0

<=>\(\hept{\begin{cases}y-2x=0\\y+2=0\end{cases}}\)

<=>\(\hept{\begin{cases}y=2x\\y=-2\end{cases}}\)

<=>\(\hept{\begin{cases}x=-4\\y=-2\end{cases}}\)

Chúc học tốt!!! Nhớ k mik nha

28 tháng 2 2021

Ta có:(x,y) = 1 =>x, y nguyên tố cùng nhau

 

                          x

              1

                      3

                             y

            6

                     4

(LOẠI) (NHÂN)

Vậy x = 3;y = 4

28 tháng 2 2021

Ta có:(x,y) = 1 =>x, y nguyên tố cùng nhau

 

X

1

3

Y

6

4

(LOẠI) (NHÂN)

Vậy x = 3;y = 4

AH
Akai Haruma
Giáo viên
6 tháng 7 2021

Bạn cần viết đề bằng công thức toán để được hỗ trợ tốt hơn.

25 tháng 7 2023

\(x^2+y^2+2\left(x+y\right)-xy=0\)

\(\Leftrightarrow4x^2-4xy+4y^2+8\left(x+y\right)=0\)

\(\Leftrightarrow\left(2x-y\right)^2+4\left(2x-y\right)+4+3y^2+12y+12=-16\)

\(\Leftrightarrow\left(2x-y+2\right)^2+3\left(y+2\right)^2=-16\)

Dễ thấy VT \(\ge0\) ; VP < 0 nên phương trình vô nghiệm 

24 tháng 7 2023

\(x^2+y^2-2\left(x+y\right)=xy\)

\(\Rightarrow x^2-2x+1+y^2-2y+1=2+xy\)

\(\Rightarrow\left(x-1\right)^2+\left(y-1\right)^2=2+xy\)

Ta lại có : \(\left(x-1\right)^2+\left(y-1\right)^2\ge2\left(x-1\right)\left(y-1\right)\) (Bất đẳng thức Cauchy)

18 tháng 8 2020

a) \(xy+3x+y=8\)

\(\Leftrightarrow\left(xy+3x\right)+\left(y+3\right)=11\)

\(\Leftrightarrow x\left(y+3\right)+\left(y+3\right)=11\)

\(\Leftrightarrow\left(x+1\right)\left(y+3\right)=11=1.11=\left(-1\right).\left(-11\right)\)

Ta xét các TH sau:

\(\hept{\begin{cases}x+1=1\\y+3=11\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=8\end{cases}}\)

\(\hept{\begin{cases}x+1=11\\y+3=1\end{cases}}\Rightarrow\hept{\begin{cases}x=10\\y=-2\end{cases}}\)

\(\hept{\begin{cases}x+1=-1\\y+3=-11\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=-14\end{cases}}\)

\(\hept{\begin{cases}x+1=-11\\y+3=-1\end{cases}}\Rightarrow\hept{\begin{cases}x=-12\\y=-4\end{cases}}\)

Vậy ta có 4 cặp số (x;y) thỏa mãn: (0;8) ; (10;-2) ; (-2;-14) ; (-12;-4)

18 tháng 8 2020

a. xy + 3x + y = 8

=> x ( y + 3 ) + ( y + 3 ) = 8 + 3 = 11

=> ( x + 1 ) ( y + 3 ) = 11

 x + 1 y + 3 x y
 11 1 10 - 2
 1  11 0 8
 - 11 - 1 - 12 - 4
 - 1 - 11 - 2 - 14

Vậy các cặp ( x ; y ) thỏa mãn đề bài là ( 10 ; - 2 ) ; ( 0 ; 8 ) ; ( - 12 ; - 4 ) ; ( - 2 ; - 14 )

b. Không rõ đề

29 tháng 12 2018

Ta có : 

2(xy - x^2 - y + 1008) = y^2 + 2018

<=> 2xy - 2x^2 -  2y + 2016 = y^2 + 2018

<=> 2xy - 2x^2 - 2y = y^2 + 2

<=> 2xy - 2x^2 - 2y - y^2 - 2 = 0 

<=> -(2x^2 - 2xy + y^2/2) - y^2/2 - 2y - 2 = 0 

<=> -2(x^2 - xy + y^2/4) - 2(y^2/4 + y + 1) = 0

<=> -2(x-y/2)^2 - 2(y/2 + 1)^2 = 0 

<=> 2(x-y/2)^2 + 2(y/2 + 1)^2 = 0 

Dấu " = " xảy ra <=> x - y/2 = 0 ; y/2 + 1 = 0

<=> x = y/2 ; y = -2

<=> x = -1 ; y = -2

Vậy x = -1 ; y = -2

30 tháng 12 2018

Ta có : 

2(xy - x^2 - y + 1008) = y^2 + 2018

<=> 2xy - 2x^2 -  2y + 2016 = y^2 + 2018

<=> 2xy - 2x^2 - 2y = y^2 + 2

<=> 2xy - 2x^2 - 2y - y^2 - 2 = 0 

<=> -(2x^2 - 2xy + y^2/2) - y^2/2 - 2y - 2 = 0 

<=> -2(x^2 - xy + y^2/4) - 2(y^2/4 + y + 1) = 0

<=> -2(x-y/2)^2 - 2(y/2 + 1)^2 = 0 

<=> 2(x-y/2)^2 + 2(y/2 + 1)^2 = 0 

Dấu " = " xảy ra <=> x - y/2 = 0 ; y/2 + 1 = 0

<=> x = y/2 ; y = -2

<=> x = -1 ; y = -2

Vậy x = -1 ; y = -2