\(Cho\)\(P=5+5^2+5^3+5^4+...+5^{102}\)
\(Ch\text{ứng}\)\(minh\)\(r\text{ằng:}\)\(P\)\(l\text{à}\)\(b\text{ội}\)\(c\text{ủa}\)\(6\)\(v\text{à}\)\(31\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{a, }2^{30}=8^{10}\)
\(\text{ }3^{20}=\left(3^2\right)^{10}=9^{10}\)
\(\text{Vậy }2^{30}< 3^{20}\)
\(\text{b, }5^{300}=\left(5^3\right)^{100}=125^{100}\)
\(3^{500}=\left(3^5\right)^{100}=243^{100}\)
\(\text{Vậy }5^{300}< 243^{100}\)
1) \(A=\left(\sqrt{7-\sqrt{21}+4\sqrt{5}}\right)^2=7-\sqrt{21}+4\sqrt{5}\)
\(B=\left(\sqrt{5}-1\right)^2=6-2\sqrt{5}\)
\(\Rightarrow A-B=1-\sqrt{21}+6\sqrt{5}=\left(1+\sqrt{180}\right)-\sqrt{21}>0\)
\(\Rightarrow A>B\Rightarrow\sqrt{7-\sqrt{21}+4\sqrt{5}}>\sqrt{5}-1\)
2) \(C=\left(\sqrt{5}+\sqrt{10}+1\right)^2=5+10+1+10\sqrt{2}+2\sqrt{5}+2\sqrt{10}\)
\(=26+10\sqrt{2}+2\sqrt{5}+2\sqrt{10}>26+10>35=\left(\sqrt{35}\right)^2\)
Vậy \(\sqrt{5}+\sqrt{10}+1>\sqrt{35}\)
3) \(\left(\frac{15-2\sqrt{10}}{3}\right)^2=\frac{225-60\sqrt{10}+40}{9}=\frac{265-60\sqrt{10}}{9}=\frac{265}{9}-\frac{20\sqrt{10}}{3}< 15\)
Vậy nên \(\frac{15-2\sqrt{10}}{3}< \sqrt{15}\)
b, \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
áp dụng dãy tỉ số bằng nhau :
\(\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
x = 2 . 10 = 20
y = 2 . 15 = 30
z = 2 . 21 = 42
Vậy : .....
a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)
MSC của y là : 20
Có: \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng dãy tỉ số bằng nhau, ta có:
\(2x+3y-z=186\)
\(\Rightarrow2.15+3.20-28=30+60-28=62\)
\(\frac{186}{62}=3\)
x = 3 . 15 = 45
y = 3 . 20 = 60
z = 3 . 28 = 84
Vậy: .....
103và 2100
Ta có:1030=(103)10=100010
2100=(210)10=102410
Vì 1000<1024 nên 1030<2100
5300 và 3453
Ta có:5300=(52)150=25150
3453=(33)151=27151=27.27150
Vì 25 < 27.27 nên 5300<3453
nhớ k ch mình nhé
\(\sqrt{2}+\sqrt{3}+\sqrt{5}< \sqrt{4}+\sqrt{9}+\sqrt{25}=2+3+5=10< 18\)
b) \(\sqrt{5}+\sqrt{7}+4< \sqrt{9}+\sqrt{9}+4=3+3+4=10< 12\)
AH la duong cao cua cac hinh tam giac nao?
Viet ten day tuong ung cua hinh tam giac.
\(P=5+5^2+...+5^{101}+5^{102}\)
\(P=5\left(1+5\right)+...+5^{101}\left(1+5\right)\)
\(P=5\cdot6+...+5^{101}\cdot6\)
\(P=6\cdot\left(5+...+5^{101}\right)⋮6\left(đpcm\right)\)
C/m tương tự khi chứng minh chia hết cho 31 ( nhóm 3 số với nhau )