Cho \(\Delta ABC\)có ba góc nhọn, gọi M là trung điểm của BC. Trên tia AM lấy điểm D sao cho MD = MA. Chứng minh rằng:
a) \(\Delta AMB=\Delta DMC\)
b)\(AB//DC\)
c)\(AC=BD\)
đề bài đúng nhé, tui đọc mãi ko hiểu, vẽ hình cx chẳng bt
yêu cầu hình vẽ, tặng 9 tick (giải đúng nữa nhoa!!) , cầu mấy anh chị CTV
a, Xét \(\Delta\)AMB và \(\Delta\)DMC có
AM =MD (gt)
^M1 = ^M2 (đối đỉnh)
MB = MC (M là trung điểm BC)
=>\(\Delta AMB=\Delta DMC\left(c.g.c\right)\)
b, Từ \(\Delta AMB=\Delta DMC\left(cmt\right)\)
=> ^B1 = ^C1
Mà 2 góc này ở vị trí so le trong
=> AB // CD
c, Xét \(\Delta AMC\)và \(\Delta DMB\)có
^M3 = ^M4 (đối đỉnh)
MA = MD (gt)
MB = MC (trung điểm)
\(\Rightarrow\Delta AMC=\Delta DMB\left(c.g.c\right)\)
=> AC = BD
a) Xét tam giác AMB và tam giác DMC có :
AM = DM (gt)
MB=MC(gt)
góc AMB = góc DMC (đối đỉnh)
nên tam giác AMB = tam giác DMC (c.g.c)
b) Ta có tam giác AMB = tam giác DMC (cmt) - CMT là chứng mình trên
=> góc ABM = góc DCM (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong nên AB song song DC
c) Xét tam giác AMC và tam giác DMB có :
AM = DM (gt)
CM = BM (gt)
góc AMC = góc DMB (đối đỉnh)
nên tam giác AMC = tam giác DMB (cgc)
suy ra AC=DB (2 cạnh tương ứng)
HỌC TỐT NHA