S = 1 + 3^2 + 3^4 + ..... + 3^2010
Hỏi S có chứ số tận cùng là bao nhiêu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có 234 số tự nhiên có 4 chữ số có tận cùng là 1 và chia hếts cho 3
4
a)\(S=1+2+2^2+...+2^{10}\)
\(2S=2+2^2+2^3+...+2^{11}\)
\(2S-S=\left(2+2^2+2^3+...+2^{11}\right)-\left(1+2+2^2+...+2^{10}\right)\)
\(S=2^{11}-1\)
b)\(S=1+3+3^2+...+3^6\)
\(3S=3+3^2+3^3+...+3^7\)
\(3S-S=\left(3+3^2+3^3+...+3^7\right)-\left(1+3+3^2+...+3^6\right)\)
\(2S=3^7-1\)
\(S=\frac{3^7-1}{2}\)
a.\(S=1+2+2^2+...+2^{10}\)
\(2S=2+2^2+2^3+...+2^{11}\)
\(\Rightarrow2S-S=S=\left(2+2^2+2^3+...+2^{11}\right)-\left(1+2+2^2+...+2^{10}\right)\)
\(=2^{11}-1\)
b) \(S=1+3+3^2+...+3^6\)
\(3S=3+3^2+3^3+...+3^7\)
\(\Rightarrow3S-S=2S=\left(3+3^2+3^3+...+3^7\right)-\left(1+3+3^2+...+3^6\right)\)
\(2S=3^7-1\Rightarrow S=\frac{3^7-1}{2}\)
S = 1 + (32 + 36 + 310 + ... + 32018) + (34 + 38 + ... + 32020)
S = 1 + A + B
A là nhóm các số hạng có dạng 32k (k thuộc N sao, k lẻ. \(1\le k\le1009\))
Với đk như thế thì 32k luôn có tận cùng là 9
Mà nhóm A có (2018-2)/4 + 1 = 505 số hạng => T/c A là 5
Tương tự với nhóm B: tận cùng mỗi số hạng là 1; có 505 số hạng => T/c B là 5
=> Tận cùng S là 1
\(S=1+3^2+3^4+.....+3^{2010}\Leftrightarrow9S=3^2+3^4+3^6+.....+3^{2012}\)
\(\Leftrightarrow9S-S=8S=3^{2012}-1=\left(......1\right)-1=\left(.....0\right)\)
<=> S có tận cùng là: 5 hoặc 0
Mà: S chứa 1006 số hạng lẻ
=> S có tận cùng là: 0
Ta có : \(S=1+3^2+...+3^{2010}\)
\(\Rightarrow9S=3^2+3^4+...+3^{2012}\)
\(\Rightarrow9S-S=\left(3^2+3^4+...+2^{2012}\right)-\left(1+3^2+...+3^{2010}\right)\)
\(\Rightarrow8S=3^{2012}-1=\left(3^4\right)^{503}-1\)
Ta thấy 34 có chữ số tận cùng là 1
Do đó : (34)503 có chữ số tận cùng là 1
Suy ra : (34)503 - 1 có chữ số tận cùng là 0
Hay 8S có chữ số tận cùng là 0
Vậy S có chữ số tận cùng là 0