Tìm các hệ số a b c thoả mãn\(\left(ax+b\right)\left(x^2-2cx+abc\right)=x^3-4x^2+3x+\frac{9}{5}\)với mọi x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\)
Ta có:
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge\frac{3a}{4}\)
\(\Leftrightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}\ge\frac{6a-b-c-2}{8}\)
Tương tự ta có: \(\hept{\begin{cases}\frac{b^3}{\left(1+c\right)\left(1+a\right)}\ge\frac{6b-c-a-2}{8}\\\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{6c-a-b-2}{8}\end{cases}}\)
Cộng vế theo vế ta được
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{6a-b-c-2}{8}+\frac{6b-c-a-2}{8}+\frac{6c-a-b-2}{8}\)
\(=\frac{a+b+c}{2}-\frac{3}{4}\ge\frac{3}{2}.\sqrt[3]{abc}-\frac{3}{4}=\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\)
( ax + b ) ( x2 - cx + 2 ) = x3a + bx2 - acx2 - bcx + 2ax + 2b = x3a + x2 ( b - ac ) - x ( bc - 2a ) + 2b
\(\Rightarrow\)x3a + x2 ( b - ac ) - x ( bc - 2a ) + 2b = x3 + x2 - 2
đồng nhất hê số, ta được : a = 1 ; b - ac = 1 ; bc - 2a = 0 ; 2b = -2
\(\Rightarrow\hept{\begin{cases}a=1\\b=-1\\c=-2\end{cases}}\)
Ta có :
\(\left(ax+b\right)\left(x^2-2cx+abc\right)=x^3-4x^2+3x+\frac{9}{5}\)
\(\Leftrightarrow ax^3+2acx^2+bx^2-2bcx+ab^2c=x^3-4x^2+3x+\frac{9}{5}\)
\(\Leftrightarrow ax^3+\left(2ac+b^2\right)x^2+\left(a^2bc-2bc\right)x+ab^2c=x^3-4x^2+3x+\frac{9}{5}\)
Đồng nhất hệ số ta được :
a = 1
2ac + b2 = -4
a2bc - 2bc = 3
\(ab^2c=\frac{9}{5}\)
\(\Rightarrow a=1;b=\frac{3}{5};c=5\)
Tl
bạn T I k cho tui trước tui trả lời cho
#Kirito