cho 3x-2y/4=2z-4y/3=4y-2z/2
CMR: x/2=y/3=z/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa lại đề là \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}.\)
Ta có:
\(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}.\)
\(\Rightarrow\frac{4.\left(3x-2y\right)}{16}=\frac{3.\left(2z-4x\right)}{9}=\frac{2.\left(4y-3z\right)}{4}.\)
\(\Rightarrow\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=\frac{\left(12x-12x\right)-\left(8y-8y\right)+\left(6z-6z\right)}{29}=\frac{0}{29}=0.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{3x-2y}{4}=0\\\frac{2z-4x}{3}=0\\\frac{4y-3z}{2}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x-2y=0\\2z-4x=0\\4y-3z=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3x=2y\\2z=4x\\4y=3z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\frac{x}{2}=\frac{y}{3}\\\frac{z}{4}=\frac{x}{2}\\\frac{y}{3}=\frac{z}{4}\end{matrix}\right.\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\left(đpcm\right).\)
Chúc bạn học tốt!
(3x-2y)/4 = (2z-4x)/3 = (4y-3z)/2 =
= (12x-8y)/16 = (6z-12x)/9 = (8y-6z)/4 = (12x-8y + 6z-12x + 8y-6z)/(16+9+4) = 0
<=>
{12x - 8y = 0
{6z - 12x = 0
{8y - 6z = 0
<=>
{x/2 = y/3
{z/4 = x/2
{y/3 = z/4
<=> x/2 = y/3 = z/4
Học tốt!
Vì \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)
\(\Rightarrow\frac{4\left(3x-2y\right)}{16}=\frac{3\left(2z-4x\right)}{9}=\frac{2\left(4y-3z\right)}{4}\)
\(\Rightarrow\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\Rightarrow\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)
\(=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}\)
\(=\frac{\left(12x-12x\right)+\left(8y-8y\right)+\left(6z-6z\right)}{16+9+4}\)
\(=\frac{0}{16+9+4}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-2y=0\\2z-4x=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x=2y\\2z=4x\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{2}=\frac{y}{3}\\\frac{x}{2}=\frac{z}{4}\end{matrix}\right.\)
\(\Leftrightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\left(đpcm\right)\)