cho hình bình hành ABCD có AB bằng 20cm ad bằng 15 cm , góc tạo bởi hai cạnh AB và BD là 120 độ .Tính diện tích hình bình hành ABCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải: Xét tam giác ACD có F,G lần lượt là trung điểm AC,DC nên FG là đường trung bình
⇒⇒FG//ADFG//AD
C/m tương tự đc EH//AD;GH//EF//BCEH//AD;GH//EF//BC
⇒EFGH⇒EFGH là hình bình hành
a/Để EFGH là hình chữ nhật thì góc FGH=90oFGH=90o
⇒gócHGD+gócFGC=90o⇒gócHGD+gócFGC=90o
Mà góc HGD=góc BCD;góc FGC= góc ADC ( góc đồng vị = nhau)
⇒⇒ góc BCD+góc ADC=90o90o
⇒⇒Để EFGH là hình chữ nhật thì tứ giác ABCD cần có góc BCD+góc ADC=90o90o
b/Để EFGH là hình thoi thì FG=HG
Mà FG=1/2AD; HG=1/2BC
⇒⇒AD=BC
⇒⇒Để EFGH là hình thoi thì tứ giác ABCD có AD=BC
c/ để EFGH là hình vuông thì EFGH phải vừa là hình chữ nhật vừa là hình thoi⇒⇒ABCD phải có đủ cả hai điều kiện trên
Nối A với C ta có AP là đường trung tuyến của ΔACDΔACD nên
SADP=SAPC=12SADC=14SABCDSADP=SAPC=12SADC=14SABCD
Tương tự SACR=SBCR=12SABC=14SABCD.SACR=SBCR=12SABC=14SABCD.
⇒SAPC+SACR=SARCP=12SABCD.⇒SAPC+SACR=SARCP=12SABCD.
SADP=SAPC=12SADC=14SABCDSADP=SAPC=12SADC=14SABCD
Tương tự SACR=SBCR=12SABC=14SABCD.SACR=SBCR=12SABC=14SABCD.
⇒SAPC+SACR=SARCP=12SABCD.⇒SAPC+SACR=SARCP=12SABCD.
Gọi H là giao điểm của AP và BQ, K là giao điểm của CR và BQ, M là giao điểm của AP và DS, N là giao điểm của CR và DS.
Dễ thấy HKNM là hình bình hành nên các tam giác sau đây có cùng diện tích:
SAKH=SHKM=SMNH=SMNCSAKH=SHKM=SMNH=SMNC=SAKB=SMCD=SAKB=SMCD
Mà SAKR=12SAKBSAKR=12SAKB (đáy gấp đôi, chung đường cao)
Tương tự SMPC=12SMCDSMPC=12SMCD
⇒SAKH=SHKM=SMNH⇒SAKH=SHKM=SMNH=SMNC=(SAKR+SMPC)=SMNC=(SAKR+SMPC)=15SARCP.=15SARCP.
Mà SARCP=12SABCDSARCP=12SABCD
⇒SHKM+SMKN=15SABCD⇒SHKM+SMKN=15SABCD hay SKHMN=15SABCD.
Tổng số phần bằng nhau là
5+2=7(phần)
Nửa chu vi hình bình hành là:
70:2=35(cm)
Cạnh đáy AB là:
35:7x5=25(cm)
Diện tích hình bình hành là
25x9=225(cm2)
Tick nha
Trần Nguyễn Hoài Thương
Dộ dài cạnh đáy AB là:
70 : (5+2)*5=50(cm)
Diện tích hình bình hành là:
50*9:2=225(cm2)
\(S_{ABCD}=AB\cdot DH=8\cdot\left(30-10\right)=8\cdot20=160\left(cm^2\right)\)