Tìm số tự nhiên nhỏ nhất khi chia 3 dư 1, chia 4 dư 2 , chia 5 dư 3
Giúp mk với, mk đâng cần gấp !!! Ai nhanh và đúng mk tick nhé! Thanks trước!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a : 5 dư 3
= > a - 3 chia hết cho 5
= > 2 (a - 3) chia hết cho 5
= > 2a - 6 + 5 chia hết cho 5
= > 2a - 1 chia hết cho 5, a chia 7 dư 4
= > a - 4 chia hết cho 7
= > 2(a - 4 ) chia hết cho 7
= > 2a - 8 + 7 chia hết cho 7
= > 2a -1 chia hết cho 7
a chia 11 dư 6
= > a - 6 chia hết cho 11
= > 2(a - 6) chia hết cho 11
= > 2a - 12 + 11 chia hết cho 11
= > 2a -1 chia hết cho 11
Vậy 2a - 1 thuộc BC(5;7;11)
Vì a nhỏ nhất nên 2a -1 nhỏ nhất
= > 2a - 1 = BC(5;7;11) = 5.7.11= 385
= > 2a - 1 =385
= > 2a = 386; a = 193
(mình nghĩ vậy)
a : 5 (dư 3) =>2a : 5 (dư 1) =>2a - 1 chia hết cho 5.
a : 7 (dư 4) =>2a : 7 (dư 1) =>2a - 1 chia hết cho 7.
a : 11 (dư 6) =>2a : 11 (dư 1) =>2a - 1 chia hết cho 11.
a nhỏ nhất => 2a nhỏ nhất => 2a - 1 nhó nhất.
=>2a - 1 thuộc BCNN(5,7,11) (1)
5 = 5
7 = 7
11 = 11
BCNN(5,7,11)= 5 . 7 . 11 = 385. (2)
Từ (1) và (2) => 2a - 1 = 385
2a = 385 + 1
2a = 386
a = 386 : 2
a = 193
Vậy,số tự nhiên a nhỏ nhất cần tìm là 193
Gọi số tự nhiên cần tìm là A và A nhỏ nhất
A chia 4 dư 3 suy ra A + 1 chia hết cho 4 (1)
A chia 5 dư 4 suy ra A + 1 chia hết cho 5 (2)
A chia 6 dư 5 suy ra A + 1 chia hết cho 6 (3)
Từ (1),(2) và (3) suy ra A + 1 thuộc BC (4,5,6)
4 = 22 ; 5 = 5 : 6 = 2 . 3
BCNN (4,5,6) = 22 . 3 . 5 = 60
A + 1 = 60k ( k thuộc N )
(+) Với k = 0 thì A +1 = 0 suy ra không tồn tại A thuộc N
(+) Với k = 1 thì A + 1 = 60 suy ra A = 59 không chia hết cho 7 ( loại )
(+) Với k = 2 thì A + 1 = 120 suy ra A = 119 chia hết cho 7 ( thỏa mãn )
Do A là số nhỏ nhất nên A = 119
Khi chia số tự nhiên b nhỏ nhất cho 7;14;49 thì được các số dư lần lượt là 4 ; 11 ; 46 .
b : 7 dư 4 , b : 14 dư 11 , b : 49 dư 46 .
Vậy b = 95 nha bạn .
số tự nhiên nhỏ nhất chia hết cho 2;3;4;5 là
2 x 3 x 2 x 5 = 60
vậy số đó là 59
ta có : \(n⋮3;5;7\)mà n nhỏ nhất và n dư 2 ; 4; 6
\(n-2;4;6\in BCNN\left(3;5;7\right)\)
3 = 3 . 1
5 = 5. 1
7 = 7.1
=> BCNN(3;5;7 ) = 3 . 5 . 7 = 105
n - 2= {107}
n - 4 = 109
n - 6 = 111
vì n chia cho 3;5;7 lần lượt có số dư là2;4;6
=>n+1\(\in\)ƯC(3;5;7)
mà n nhỏ nhất
\(\Rightarrow\)n+1\(\in UCLN\left(3;5;7\right)\)
ta có
3=3
5=5
7=7
\(\Rightarrow\)\(UCLN\left(3;5;7\right)=\)3x5x7=105
\(\Rightarrow\)n+1=105
\(\Rightarrow n=105-1=104\)
Gọi số tự nhiên nhỏ nhất đó là a.
Vì a - 1 chia hết cho 3=>a+2 chia hết cho 3
a - 3 chia hết cho 5=>a+2 chia hết cho 5
a - 5 chia hết cho 7=>a+2 chia hết cho 7
=> a+2 thuộc vào BCNN(3,5,7)
Ta có : 3=3 ; 5=5 ;7=7 => BCNN(3,5,7)=3.5.7=105
=> a+2=105
=>a=103
Vậy số tự nhiên nhỏ nhất đó là 103
a nhỏ nhất
a+2 thuộc BCNN(3;4;5)
4=22
BCNN(3;4;5)=22x3x5=60
a+2=60
a=60-2=58