1. Cho góc xOy nhọn. Trên tia Ox lấy hai điểm A, B (điểm B nằm giữa hai điểm O Và A). Trên tia Oy lấy hai điểm C, D (điểm D nằm giữa hai điểm O và C) sao cho OA = OC và OB = ODa) Chứng minh tam giác OAD = tam giác OCBb) AD cắt BC tại M. Chứng minh tam giác CMB = tam giác AMBc) Chứng minh rằng OM là tia phân giác của góc xOy2. Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BCa) Chứng minh tam giác ABM = tam giác...
Đọc tiếp
1. Cho góc xOy nhọn. Trên tia Ox lấy hai điểm A, B (điểm B nằm giữa hai điểm O Và A). Trên tia Oy lấy hai điểm C, D (điểm D nằm giữa hai điểm O và C) sao cho OA = OC và OB = OD
a) Chứng minh tam giác OAD = tam giác OCB
b) AD cắt BC tại M. Chứng minh tam giác CMB = tam giác AMB
c) Chứng minh rằng OM là tia phân giác của góc xOy
2. Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC
a) Chứng minh tam giác ABM = tam giác ACM
b) Chứng minh AM vuông góc với BC.
c) Trên cạnh BA lấy điểm E, trên cạnh CA lấy điểm F sao cho BE = CF. Chứng minh tam giác EBC = tam giác ECB
d) Chứng minh EF = BC
3. Cho đường thẳng a. Trên cùng một nửa mặt phẳng có bờ là dường thẳng a lấy hai điểm A và B. Từ A vẽ AH vuông góc với đường thẳng a (H thuộc a). Trên tia đối của tia HA lấy điểm C sao cho HC = HA. Từ B vẽ BK vuông góc với đường thẳng a (K thuộc a). Trên tia đối của tia KB lấy điểm D sao cho KB = KD. Đoạn thẳng AD cắt đường thẳng a tại E. Nối E với C và E với B
a) Chứng minh rằng: EA = EC và EB = ED
b) Chứng minh rằng: C, E, B thẳng hàng
c) Gọi M là trung điểm của đoạn thẳng AB, N là trung điểm của đoạn thẳng CD. Chứng minh rằng EM = EN
4. Cho tam giác ABC. D, E lần lượt là trung điểm của đoạn thẳng AB, AC. Trên tia đối của tia DC lấy điểm M sao cho DM = DC. Trên tia đối cuả tia EB lấy điểm N sao cho EN = EB. Chứng minh rằng
a) Tam giác DBC = tam giác DAM
b) AM//BC
c) M, A, N thẳng hàng
a,b: Xét tứ giác AKCG có
E là trung điểm chung của AC và KG
nên AKCG là hình bình hành
=>AK//CG và AK=CG
Xét tứ giác BGCI có
D là trung điểm chung của BC và GI
nên BGCI là hình bình hành
=>BI//CG và BI=CG
=>AK=CG=BI
c: Xét ΔGAK và ΔGIB có
GA=GI
góc AGK=góc IGB
GK=GB
Do đó: ΔGAK=ΔGIB
=>AG=GI=2GD
d: Xét ΔABC có
BE,AD là các trung tuyến
BE cắt AD tại G
Do đó; G là trọng tâm
=>F là trung điểm của AB