Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
a: Ta có: \(2x\left(x-1\right)-2x^2=-6\)
\(\Leftrightarrow2x^2-2x-2x^2=-6\)
\(\Leftrightarrow x=3\)
b: Ta có: \(2x\left(x-3\right)+5\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)
a. x( x+ 3)= 0
⇔ x= 0 hoặc x+ 3= 0
⇔ x= 0 x = -3
b. x( 2x− 1)+ 2( 2x− 1) =0
⇔ ( 2x− 1)(x+ 2) =0
⇔ 2x− 1 =0 hoặc x+ 2 =0
⇔ 2x =1 x = -2
⇔ x =\(\dfrac{1}{2}\) x = -2
Bài 3
a) 2x(x - 3) - x + 3 = 0
2x(x - 3) - (x - 3) = 0
(x - 3)(2x - 1) = 0
x - 3 = 0 hoặc 2x - 1 = 0
*) x - 3 = 0
x = 3
*) 2x - 1 = 0
2x = 1
x = 1/2
Vậy x = 1/2; x = 3
b) (3x - 1)(2x + 1) - (x + 1)² = 5x²
6x² + 3x - 2x - 1 - x² - 2x - 1 - 5x² = 0
(6x² - x² - 5x²) + (3x - 2x - 2x) = 0 + 1 + 1
-x = 2
x = -2
Bài 2
a) 5x² + 30y
= 5(x² + 6y)
b) x³ - 2x² - 4xy² + x
= x(x² - 2x - 4y² + 1)
= x[(x² - 2x + 1) - 4y²]
= x[(x - 1)² - (2y)²]
= x(x - 1 - 2y)(x - 1 + 2y)
Bài 2:
a: Ta có: \(x\left(2x-1\right)-2x+1=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)
\(a,\Leftrightarrow x\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\\ b,\Leftrightarrow3x\left(x-1\right)+\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(3x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\\ c,\Leftrightarrow\left(x+2\right)\left(2x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{2}\end{matrix}\right.\)
\(a,\Leftrightarrow\left(x+2\right)\left(x+2-x+3\right)=0\\ \Leftrightarrow5\left(x+2\right)=0\Leftrightarrow x=-2\\ b,\Leftrightarrow2x\left(x-1\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\\ c,\Leftrightarrow\left(x-1-2x-1\right)\left(x-1+2x+1\right)=0\\ \Leftrightarrow3x\left(-x-2\right)=0\Leftrightarrow-3x\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
a)2x.(x+3)-3.(x^2+1)=x+1-x.(x-2)
<=> 2x2 + 6x - 3x2 - 3 = x - 1 - x2 + 2x
<=> 2x2 + 6x - 3x2 - x + x2 - 2x = -1 +3
<=> 3x = 2
<=> x = 2/3
b)(x+2).(x-2)-(x-3).(x+5)=0
<=> x2 - 4 - x2 - 5x - 3x - 15 = 0
<=> -5x - 3x = 4 + 15
<=> -8x = 19
<=> x = -19/8
Phần c tương tự ạ
\(x^2-3x+2.\left(x-3\right)=0\)
\(x.\left(x-3\right)+2.\left(x-3\right)=0\)
\(\left(x-3\right).\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
\(x.\left(x-3\right)-3x+9=0\)
\(x.\left(x-3\right)-3.\left(x-3\right)=0\)
\(\left(x-3\right)^2=0=>x=3\)
a,\(x^2-3x+2\left(x-3\right)=0.\)
\(\Leftrightarrow x^2-3x+2x-6=0\)
\(\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow\left(x^2-2x\right)+\left(3x-6\right)=0\)
\(\Leftrightarrow x\left(x-2\right)+3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
a) 2 - |x + 1| = 2x
<=> |x + 1| = 2 - 2x
ĐK : 2 - 2x \(\ge0\Leftrightarrow x\le1\)
Khi đó |x + 1| = 2 - 2x
<=> \(\orbr{\begin{cases}x+1=2-2x\\x+1=2x-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\left(tm\right)\\x=3\left(\text{loại}\right)\end{cases}}\)
Vậy x = 1/3
b) 3|x + 2| - 2|x + 3| = 0
<=> 3|x + 2| = 2|x + 3|
<=> \(\orbr{\begin{cases}3\left(x+2\right)=2\left(x+3\right)\\3\left(x+2\right)=-2\left(x+3\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{12}{5}\end{cases}}}\)
Vậy \(x\in\left\{0;-\frac{12}{5}\right\}\)