Cho tam giác ABC có góc A = 90o và AB = AC. Gọi K là trung điểm của BC
a) CMR: \(\Delta AKB=\Delta AMC\)
b) CMR AM là tia phân giác của \(\widehat{BAC}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để chứng minh ΔMAB = ΔMAC, ta có thể sử dụng nguyên lý cắt giao. Vì AB = AC và M là trung điểm BC, nên ta có AM là đường trung trực của đoạn thẳng BC. Từ đó, ta có AM ⊥ BC. Vì AM là đường trung trực của đoạn thẳng BC, nên ta cũng có MB = MC. Như vậy, ta đã chứng minh được ΔMAB = ΔMAC.
Để chứng minh AM là tia phân giác của góc BAC, ta có thể sử dụng tính chất của tam giác cân. Vì AB = AC và AM là đường trung trực của đoạn thẳng BC, nên ta có AM là tia phân giác của góc BAC.
Để chứng minh AM ⊥ BC, ta đã chứng minh ở trên rồi. Vì AM là đường trung trực của đoạn thẳng BC, nên ta có AM ⊥ BC.
AD/DB=AM/MB
AE/EC=AM/MC
mà MB=MC
nên AD/DB=AE/EC
=>DE//BC
Để DE là đừog trung bình của ΔABC thì AD/DB=AE/EC=1
=>AM/MB=AM/MC=1
=>ΔABC vuông tại A
Xét tam giác AMB và tam giác AMC có:
AB=AC(giả thiết)
AM chung
MB=MC(M là trung điểm BC)
Từ 3 điều trên, ta có tam giác AMB=tam giác AMC=>góc B=góc C
b/ Ta có tam giác AMB=tam giác AMC=>góc BAM=góc CAM=>AM là tia phân giác của góc BAC
c/ Ta có tam giác AMB=tam giác AMC=>góc AMB=góc AMC mà tổng 2 góc này bằng 180 độ=>góc AMB=góc AMC=>AM vuông góc với BC
bạn ơi M ở đâu z
Ta có K là trung điểm của BC
mà BC=Ba
suy ra K là đường trung tuyến của tam giác ABC
Xét tam gAKB và tg AMC
BK=BC
A1=A2(cmt)
BA=BC(BC=BA suy ra ABC là tam giác đều)
2 tam giác = nhau (c-g-c)