cho các số nguyên a,b,c,d thỏa mãn a+b+c+d=0
chứng minh rằng (ab-cd)(bc-ad)(ac-bd) là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho các số nguyên a,b,c,d thỏa mãn a+b+c+d=0
chứng minh rằng (ab-cd)(bc-ad)(ac-bd) là số chính phương
\(ac+bd=\left(b+d+a-c\right)\left(b+d-a+c\right)\)
\(\Leftrightarrow ac+bd=\left(b+d\right)^2-\left(a-c\right)^2\)
\(\Leftrightarrow ac+bd=b^2+d^2+2bd-a^2-c^2+2ac\)
\(\Leftrightarrow a^2-c^2=b^2+d^2+ac+bd\) (1)
Ta có
\(\left(ab+cd\right)\left(ad+bc\right)=a^2bd+ab^2c+acd^2+bc^2d=\)
\(=bd\left(a^2+c^2\right)+ac\left(b^2+d^2\right)\) (2)
Thay (1) vào (2)
\(\left(ab+cd\right)\left(ad+bc\right)=bd\left(b^2+d^2+ac+bd\right)+ac\left(b^2+d^2\right)\)
\(\Leftrightarrow\left(ab+cd\right)\left(ad+bc\right)=bd\left(b^2+d^2\right)+bd\left(ac+bd\right)+ac\left(b^2+d^2\right)\)
\(\Leftrightarrow\left(ab+cd\right)\left(ad+bc\right)=\left(b^2+d^2\right)\left(ac+bd\right)+bd\left(ac+bd\right)\)
\(\Leftrightarrow\left(ab+cd\right)\left(ad+bc\right)=\left(ac+bd\right)\left(b^2+d^2+bd\right)\) (3)
Do \(a>b>c>d\)
\(\Rightarrow\left(a-d\right)\left(b-c\right)>0\Leftrightarrow ab-ac-bd+cd>0\)
\(\Leftrightarrow ab+cd>ac+bd\) (4)
Và
\(\left(a-b\right)\left(c-d\right)>0\Leftrightarrow ac-ad-bc+bd>0\)
\(\Leftrightarrow ac+bd>ad+bc\) (5)
Từ (4) và (5) \(\Rightarrow ab+cd>ad+bc\)
Ta có
(3)\(\Leftrightarrow b^2+d^2+bd=\dfrac{\left(ab+cd\right)\left(ad+bc\right)}{\left(ac+bd\right)}\) (6)
Vế trái là số nguyên => vế phải cũng phải là số nguyên
Giả sử ab+cd là số nguyên tố mà \(ab+cd>ac+bd\)
\(\Rightarrow UC\left(ab+cd;ac+bd\right)=1\) => ab+cd không chia hết cho ac+bd
=> để vế phải của (6) là số nguyên \(\Rightarrow ad+bc⋮ac+bd\Rightarrow ad+bc>ac+bd\) Mâu thuẫn với (5) nên giả sử sai => ab+cd không thể là số nguyên tố
mình là người mới ,cho mình hỏi làm sao để kiếm xu đổi quà
Gỉa sử ab+1=n2 (n thuộc N)
Cho c=a+b+2n.Ta có:
* ac+1=a(a+b+2n)+1
=a2+2na+ab+1=a2+2na+n2=(a+n)2
* bc +1=b(a+b+2n)+1=b2+2nb+ab+1
=b2+2nb+n2=(b+n)2
Vậy ac+1 và bc+1 đều là số chính phương.
Vì a+b+c+d=0\(\Rightarrow a+b+c=-d\Rightarrow ac+bc+c^2=-cd\)
\(\Rightarrow\)\(ab-cd=ab+ac+bc+c^2=\left(a+c\right)\left(b+c\right)\)
Tương tự ta có \(bc-ad=\left(a+b\right)\left(a+c\right)\)
\(ac-bd=\left(a+b\right)\left(b+c\right)\)
Từ 3 điều trên ta suy ra đpcm