K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2018

\(\left(\dfrac{a-3}{a}-\dfrac{a}{a-3}+\dfrac{9}{a^2-3a}\right):\dfrac{2a+2}{a}=\left(\dfrac{a-3}{a}-\dfrac{a}{a-3}+\dfrac{9}{a\left(a-3\right)}\right):\dfrac{2a+2}{a}=\left(\dfrac{a^2-6a+9}{a\left(a-3\right)}-\dfrac{a^2}{a\left(a-3\right)}+\dfrac{9}{a\left(a-3\right)}\right):\dfrac{2a+2}{a}=\left(\dfrac{a^2-6a+9-a^2+9}{a\left(a-3\right)}\right):\dfrac{2a+2}{a}=\dfrac{18-6a}{a\left(a-3\right)}:\dfrac{2a+2}{a}=\dfrac{6a-18}{\left(-a\right)\left(3-a\right)}:\dfrac{2a+2}{a}=\dfrac{6}{\left(-a\right)}:\dfrac{2a+2}{a}=\dfrac{6a}{\left(-2a^2\right)+\left(-2a\right)}.DKXD:a\ne0;a\ne3\)

26 tháng 12 2018

thanks bạn

28 tháng 6 2021

`M=sqrt{(3a-1)^2}+2a-3`

`=|3a-1|+2a-3`

`=3a-1+2a-3(do \ a>=1/3)`

`=5a-4`

`N=sqrt{(4-a)^2}-a+5`

`=|4-a|-a+5`

`=a-4-a+5(do \ a>4)`

`=1`

`I=sqrt{(3-2a)^2}+2-7`

`=|3-2a|-5`

`=3-2a-5(do \ a<3/2)`

`=-2-2a`

`K=(a^2-9)/4*sqrt{4/(a-2)^2}`

`=(a^2-9)/4*|2/(a-2)|`

`=(a^2-9)/(2|a-2|)`

Nếu `3>a>2=>|a-2|=a-2`

`=>K=(a^2-9)/(2(a-2))`

Nếu `a<2=>|a-2|=2-a`

`=>K=(a^2-9)/(2(2-a))`

28 tháng 6 2021

\(M=\left|3a-1\right|+2a-3\)

\(a-\dfrac{1}{3}\ge0\)

\(\Rightarrow M=3a-1+2a-3=5a-4\)

\(N=\left|4-a\right|-a+5\)

\(4-a< 0\)

\(\Rightarrow N=a-4-a+5=1\)

\(I=\left|3-2a\right|-5\)

\(a-\dfrac{3}{2}< 0\)

\(\Rightarrow I=3-2a-5=-2a-2\)

K, Ta có : \(a-3< 0\)

\(\Rightarrow K=\dfrac{2\left(a^2-9\right)}{4\left|a-2\right|}=\dfrac{\left(a-3\right)\left(a+3\right)}{\left|2a-4\right|}\)
 

a) Ta có: \(A=\dfrac{a^2-1}{3}\cdot\sqrt{\dfrac{9}{\left(1-a\right)^2}}\)

\(=\dfrac{\left(a+1\right)\cdot\left(a-1\right)}{3}\cdot\dfrac{3}{\left|1-a\right|}\)

\(=\dfrac{\left(a+1\right)\left(a-1\right)}{1-a}\)

=-a-1

b) Ta có: \(B=\sqrt{\left(3a-5\right)^2}-2a+4\)

\(=\left|3a-5\right|-2a+4\)

\(=5-3a-2a+4\)

=9-5a

c) Ta có: \(C=4a-3-\sqrt{\left(2a-1\right)^2}\)

\(=4a-3-\left|2a-1\right|\)

\(=4a-3-2a+1\)

\(=2a-2\)

d) Ta có: \(D=\dfrac{a-2}{4}\cdot\sqrt{\dfrac{16a^4}{\left(a-2\right)^2}}\)

\(=\dfrac{a-2}{4}\cdot\dfrac{4a^2}{\left|a-2\right|}\)

\(=\dfrac{a^2\left(a-2\right)}{-\left(a-2\right)}\)

\(=-a^2\)

NV
30 tháng 7 2021

\(A=\left|a-3\right|-3a=3-a-3a=3-4a\)

\(B=4a+3-\left|2a-1\right|=4a+3-2a+1=2a+4\)

\(C=\dfrac{4}{a^2-4}\left|a-2\right|=\dfrac{-4\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}=\dfrac{-4}{a+2}\)

\(D=\dfrac{a^2-9}{12}:\sqrt{\dfrac{\left(a+3\right)^2}{16}}=\dfrac{a^2-9}{12}:\dfrac{\left|a+3\right|}{4}=\dfrac{\left(a-3\right)\left(a+3\right).4}{-12\left(a+3\right)}=\dfrac{3-a}{3}\)

\(A=\sqrt{\left(a-3\right)^2}-3a\)

=3-a-3a

=3-4a

 

a: \(=\dfrac{2a^2-6a+3a+9-3a^2-3}{\left(a-3\right)\left(a+3\right)}\cdot\dfrac{a-3}{a+1}\)

\(=\dfrac{-a^2-3a+6}{\left(a+3\right)}\cdot\dfrac{1}{â+1}=\dfrac{-a^2-3a+6}{\left(a+3\right)\left(a+1\right)}\)

b: |a|=2

=>a=2 hoặc a=-2

Khi a=2 thì \(A=\dfrac{-2^2-3\cdot2+6}{\left(2+3\right)\left(2+1\right)}=\dfrac{-4}{15}\)

Khi a=-2 thì \(A=\dfrac{-\left(-2\right)^2-3\cdot\left(-2\right)+6}{\left(-2+3\right)\left(-2+1\right)}=-8\)

1 tháng 1 2023

em c.ơn nhiều ạ

 

23 tháng 12 2022

2.

\(P=\left(\dfrac{a+6}{3\left(a+3\right)}-\dfrac{1}{a+3}\right).\dfrac{27a}{a+2}=\left(\dfrac{a+3}{3\left(a+3\right)}\right).\dfrac{27a}{a+2}=\dfrac{27a}{3\left(a+2\right)}=\dfrac{9a}{a+2}\)

ĐKXĐ là :

\(a\ne0;-3;-2\)

Vs a = 1 ta có:

=> P=3

1.

\(M=\left(\dfrac{2a}{2a+b}-\dfrac{4a^2}{\left(2a+b\right)^2}\right):\left(\dfrac{2a}{\left(2a-b\right)\left(2a+b\right)}-\dfrac{1}{2a-b}\right)=\left(\dfrac{4a^2+2ab-4a^2}{\left(2a+b\right)^2}\right).\left(\dfrac{\left(2a+b\right)\left(2a-b\right)}{b}\right)=\dfrac{2a.\left(2a-b\right)}{\left(2a+b\right)}\)

10 tháng 7 2023

\(-\left(\dfrac{a-1}{a+1}-\dfrac{a}{a-1}-\dfrac{3a+1}{1-a^2}\right):\dfrac{2a+1}{a^2-1}\left(dk:a\ne1,a\ne-1\right)\)

\(=-\left(\dfrac{a-1}{a+1}-\dfrac{a}{a-1}+\dfrac{3a+1}{a^2-1}\right):\dfrac{2a+1}{\left(a-1\right)\left(a+1\right)}\\ =-\left(\dfrac{\left(a-1\right)^2-a\left(a+1\right)+3a+1}{\left(a-1\right)\left(a+1\right)}\right).\dfrac{\left(a-1\right)\left(a+1\right)}{2a+1}\\ =-\dfrac{a^2-2a+1-a^2-a+3a+1}{\left(a-1\right)\left(a+1\right)}.\dfrac{\left(a-1\right)\left(a+1\right)}{2a+1}\)

\(=-\dfrac{2}{2a+1}\)

11 tháng 7 2023

\(-\left(\dfrac{a-1}{a+1}-\dfrac{a}{a-1}-\dfrac{3a+1}{1-a^2}\right):\dfrac{2a+1}{a^2-1}\\ =-\left(\dfrac{a-1}{a+1}-\dfrac{a}{a-1}+\dfrac{3a+1}{a^2-1}\right).\dfrac{\left(a-1\right)\left(a+1\right)}{2a+1}\\ =-\left(\dfrac{a-1}{a+1}-\dfrac{a}{a-1}+\dfrac{3a-1}{\left(a-1\right)\left(a+1\right)}\right).\dfrac{\left(a-1\right)\left(a+1\right)}{2a+1}\\ =-\left(\dfrac{\left(a-1\right)^2}{\left(a+1\right)\left(a-1\right)}-\dfrac{a\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}+\dfrac{3a+1}{\left(x-1\right)\left(x+1\right)}\right).\dfrac{\left(a-1\right)\left(a+1\right)}{2a+1}\\ =-\left(\dfrac{\left(a-1\right)^2-a\left(a+1\right)+3a+1}{\left(a-1\right)\left(a+1\right)}\right).\dfrac{\left(a-1\right)\left(a+1\right)}{2a+1}\)\(=-\left(\dfrac{a^2-2a+1-\left(a^2+a\right)+3a+1}{\left(a-1\right)\left(a+1\right)}\right).\dfrac{\left(a-1\right)\left(a+1\right)}{2a+1}\\ =-\left(\dfrac{a^2-2a+1-a^2-a+3a+1}{\left(a-1\right)\left(a+1\right)}\right).\dfrac{\left(a-1\right)\left(a+1\right)}{2a+1}\\ =-\left(\dfrac{2}{\left(a-1\right)\left(a+1\right)}\right).\dfrac{\left(a-1\right)\left(a+1\right)}{2a+1}\\ =\dfrac{-2.\left(a-1\right)\left(a+1\right)}{\left(a-1\right)\left(a+1\right).\left(2a+1\right)}\\ =-\dfrac{2}{2a+1}\)

__

\(-\dfrac{2}{2a+1}=\dfrac{3}{a-1}\\ \Leftrightarrow-2\left(a-1\right)=3\left(2a+1\right)\\ \Leftrightarrow-2a+2-6a-3=0\\ \Leftrightarrow-8a-1=0\\ \Leftrightarrow-8a=1\\ \Leftrightarrow a=-\dfrac{1}{8}\)

AH
Akai Haruma
Giáo viên
15 tháng 2 2021

Lời giải:

a) ĐKXĐ: $a\neq 0; a\neq 3; a\neq 2$

\(P=\left[\frac{a}{3a(a-2)}-\frac{2a-3}{a^2(a-2)}\right].\frac{6a}{(a-3)^2}=\left[\frac{a^2}{3a^2(a-2)}-\frac{6a-9}{3a^2(a-2)}\right].\frac{6a}{(a-3)^2}=\frac{a^2-6a+9}{3a^2(a-2)}.\frac{6a}{(a-3)^2}=\frac{(a-3)^2}{3a^2(a-2)}.\frac{6a}{(a-3)^2}=\frac{2}{a(a-2)}\)

b) 

Để $P>0\Leftrightarrow \frac{2}{a(a-2)}>0\Leftrightarrow a(a-2)>0$

$\Leftrightarrow a>2$ hoặc $a< 0$

Kết hợp với ĐKXĐ suy ra $(a>2; a\neq 3)$ hoặc $a< 0$

ĐKXĐ: \(a\notin\left\{0;2\right\}\)

a) Ta có: \(P=\left(\dfrac{a}{3a^2-6a}+\dfrac{2a-3}{2a^2-a^3}\right)\cdot\dfrac{6a}{a^2-6a+9}\)

\(=\left(\dfrac{a}{3a\left(a-2\right)}+\dfrac{2a-3}{a^2\left(2-a\right)}\right)\cdot\dfrac{6a}{a^2-6a+9}\)

\(=\left(\dfrac{a^2}{3a^2\cdot\left(a-2\right)}-\dfrac{3\left(2a-3\right)}{3a^2\cdot\left(a-2\right)}\right)\cdot\dfrac{6a}{\left(a-3\right)^2}\)

\(=\dfrac{a^2-6a+9}{3a^2\cdot\left(a-2\right)}\cdot\dfrac{6a}{\left(a-3\right)^2}\)

\(=\dfrac{\left(a-3\right)^2}{3a^2\left(a-2\right)}\cdot\dfrac{6a}{\left(a-3\right)^2}\)

\(=\dfrac{2}{a\left(a-2\right)}\)

b) Để P>0 thì \(\dfrac{2}{a\left(a-2\right)}>0\)

mà 2>0

nên \(a\left(a-2\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a>0\\a-2>0\end{matrix}\right.\\\left\{{}\begin{matrix}a< 0\\a-2< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a>0\\a>2\end{matrix}\right.\\\left\{{}\begin{matrix}a< 0\\a< 2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a>2\\a< 0\end{matrix}\right.\)

Kết hợp ĐKXĐ, ta được: \(\left[{}\begin{matrix}a>2\\a< 0\end{matrix}\right.\)

Vậy: Để P>0 thì \(\left[{}\begin{matrix}a>2\\a< 0\end{matrix}\right.\)