K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 12 2018

\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}=3^{n+1}\left(3^2+1\right)+2^{n+2}\left(2+1\right)\)

\(=3^{n+1}.10+2^{n+2}.3=3^n.3.2.5+2^{n+1}.2.3\)

\(=3^n.5.6+2^{n+1}.6=\left(3^n.5+2^{n+1}\right).6⋮6\)

Vậy \(\left(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\right)⋮6\)

13 tháng 9 2017

1) Đặt A = n^5 - n = n(n^4 - 1) = n(n^2 - 1)(n^2 + 1) = n(n - 1)(n + 1)(n^2 + 1) 
Nếu n chia hết cho 5 ta dễ thấy đpcm 
Nếu n : 5 dư 1 => n = 5k + 1 
=> A = n.(5k + 1 - 1)(n + 1)(n^2 + 1) = n.5k.(n + 1)(n^2 + 1) chia hết cho 5 
Nếu n : 5 dư 2 => n = 5k + 2 
=> A = n(n - 1)(n + 1)[(5k + 2)^2 + 1] = n(n - 1)(n + 1)(25k^2 + 20k + 5) 
= 5n(n - 1)(n + 1)(5k^2 + 4k + 1) chia hết cho 5 
Nếu n : 5 dư 3 => n = 5k + 3 
=>A = n(n - 1)(n + 1)(25k^2 + 30k + 10) = 5n(n - 1)(n + 1)(5k^2 + 6k + 2) chia hết cho 5 
Nếu n : 5 dư 4 => n = 5k + 4 
=> A = n(n - 1)(5k + 5)(n^2 + 1) = 5n(n - 1)(k + 1)(n^2 + 1) chia hết cho 5 
Vậy trong tất cả trường hợp n^5 - n luôn chia hết cho 6 

2) Đặt B = n^3 - 13n = n^3 - n -12n = n(n - 1)(n + 1) - 12n 
Ta có : Trong 3 số nguyên liên tiếp tồn tại ít nhất 1 số chẵn và tồn tại ít nhất một số chia hết cho 3 nên tích của 3 số đó chia hết cho 2 và chia hết cho 3 mà (2;3) = 1 nên tích 3 số nguyên liên tiếp chia hết cho 6 
=> n(n - 1)(n + 1) chia hết cho 6 mà 12n chia hết cho 6 
=> n^3 - n chia hết cho 6 

3) n^3 + 23n = n^3 - n + 24n = n(n - 1)(n + 1) + 24n 
Tương tự câu 2 : n(n - 1)(n + 1) và 24n chia hết cho 6 
=> n^3 + 23n chia hết cho 6 

4)Đặt A = n(n + 1)(2n + 1) = n(n + 1)[2(n - 1) + 3] 
= 2n(n + 1)(n - 1) + 3n(n + 1) 
n(n + 1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 
2n(n + 1)(n - 1) chia hết cho 2 
=> A chia hết cho 2 
n(n + 1)(n - 1) là tích 3 số nguyên liên tiếp nên chia hết cho 3 
3n(n + 1) chia hết cho 3 
=> A chia hết cho 3 
Mà (2 ; 3) = 1 (nguyên tố cùng nhau) 
=> A chia hết cho 6 

5) Đặt A = 3n^4 - 14n^3 + 21n^2 - 10n 
Chứng minh bằng quy nạp 
Với n =1 => A = 0 chia hết cho 24 
Giả sử A chia hết 24 đúng với n = k 
Nghĩa là :A(k) = 3k^4 - 14k^3 + 21k^2 - 10k chia hết cho 24 
Ta phải chứng minh : 
A chia hết cho 24 đúng với n = k + 1 
Nghĩa là : 
A(k + 1) = 3(k + 1)^4 - 14(k + 1)^3 + 21(k + 1)^2 - 10(k + 1) 
Khai triển ta được : 
A = (3k^4 - 14k^3 + 21k^2 - 10k) + (12k^3 - 24k^2 + 12k) 
Ta phải chứng minh : 12k^3 - 24k^2 + 12k chia hết 24 
12k^3 - 24k^2 + 12k = 12k(k^2 - 2k + 1) 
= 12k(k - 1)^2 = 12k(k - 1)(k - 1) 
12 chia hết 12 
k(k - 1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 
=> 12k^3 - 24k^2 - 2k + 1 chia hết cho 24 
Mà 3k^4 - 14k^3 + 21k^2 - 10k chia hết cho 24 (giả thiết quy nạp) 
=> A(k + 1) chia hết 24 
Theo nguyên lý quy nạp => A chia hết cho 24 (đpcm) 

6) n = 2k + 1 với k thuộc Z 
A = n^2 + 4n + 3 = (2k + 1)^2 + 4(2k + 1) + 3 
= 4k^2 + 12k + 8 
= 4(k^2 + 3k + 2) 
= 4(k + 2k + k + 2) 
= 4(k + 1)(k + 2) 
4 chia hết cho 4 
(k +1)(k + 2) là tích 2 số nguyên liên tiếp nên chia hết cho 2 
=> n^2 + 4n + 3 chia hết cho 4.2 = 8 với n lẻ 

7) n = 2k + 1 
Đặt A = n^3 + 3n^2 - n - 3 
= (2k + 1)^3 + 3(2k + 1)^2 - (2k + 1) - 3 
= 8k^3 + 24k^2 + 16k 
= 8k(k^2 + 3k + 2) 
= 8k(k^2 + k + 2k + 2) 
= 8k(k + 1)(k + 2) 
8 chia hết cho 8 
k(k + 1)(k + 2) là tích 3 số nguyên liên tiếp nên chia hết cho 2 và 3 => chia hết cho 6 
=> A chia hết cho 8.6 = 48 với n lẻ

20 tháng 7 2019

\(\left(2n+1\right)\left(n^2-3n-1\right)-2n^3+1\)

\(=2n^3-6n^2-2n+n^2-3n-1-2n^3+1\)

\(=-5n^2-5n=-5n\left(n+1\right)\)

Vì n và n+1 là 2 số nguyên liên tiếp nên n(n+1) chia hết cho 2 \(=>-5n\left(n+1\right)⋮10\)

Vậy (2n+1)(n^2-3n-1)-2n^3+1 chia hết cho 10 với mọi n đều thuộc Z

4 tháng 7 2017

2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1

Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1

3) Ta có : 5n - 1 chia hết chi n - 2  

=> 5n - 10 + 9 chia hết chi n - 2 

=> 5(n - 2) + 9 chia hết chi n - 2 

=> n - 2 thuộc Ư(9) = {1;3;9}

Ta có bảng : 

n - 2139
n3511
4 tháng 7 2017

1) Ta có : 2n + 3 chia hết cho 3n + 1 

<=> 6n + 9 chia hết cho 3n + 1

<=> 6n + 2 + 7 chia hết cho 3n + 1

=>  7 chia hết cho 3n + 1

=> 3n + 1 thuộc Ư(7) = {1;7}

Ta có bảng : 

3n + 117
3n06
n02

Vậy n thuộc {0;2}

5 tháng 7 2017

Ta có n-3=n+4-7

6)=>n-4+7 chia hết cho n+4

=>7 chia hết cho n+4

=> n+4 thuộc Ư(7)

=> n+4 thuộc {1, -1,7,-7}

=> n thuộc {-3,-5,3,-11}

16 tháng 11 2022

1: =>3n-12+17 chia hết cho n-4

=>\(n-4\in\left\{1;-1;17;-17\right\}\)

hay \(n\in\left\{5;3;21;-13\right\}\)

2: =>6n-2+9 chia hết cho 3n-1

=>\(3n-1\in\left\{1;-1;3;-3;9;-9\right\}\)

hay \(n\in\left\{\dfrac{2}{3};0;\dfrac{4}{3};-\dfrac{2}{3};\dfrac{10}{3};-\dfrac{8}{3}\right\}\)

4: =>2n+4-11 chia hết cho n+2

=>\(n+2\in\left\{1;-1;11;-11\right\}\)

hay \(n\in\left\{-1;-3;9;-13\right\}\)

5: =>3n-4 chia hết cho n-3

=>3n-9+5 chia hết cho n-3

=>\(n-3\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{4;2;8;-2\right\}\)

6: =>2n+2-7 chia hết cho n+1

=>\(n+1\in\left\{1;-1;7;-7\right\}\)

hay \(n\in\left\{0;-2;6;-8\right\}\)

25 tháng 9 2017

Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3

=> ĐPCM;

3 tháng 10 2019

A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6

9 tháng 1 2016

1) 2n+7=2(n+1)+5

để 2n+7 chia hết cho n+1 thì 5 phải chia hết cho n+1

=> n+1\(\in\) Ư(5) => n\(\in\){...............}

bạn tự tìm n vì mình chưa biết bạn có học số âm hay chưa

Từ bài 2-> 4 áp dụng như bài 1

4 tháng 1 2021

Ta có 2n+7=2(n+1)+5

Vì 2(n+1

Do đó 2n + 7=2(n+1)+5 khi 5 chí hết cho n +1

Suy ra n+1 "thuộc tập hợp" Ư (5) = {1;5}

Lập bảng n+1 I 1 I 5

                  n   I 0 I 4

Vậy n "thuộc tập hợp" {0;4}

5 tháng 8 2019

\(A=\left(n^2+3n+2\right)\left(2n-1\right)-2\left(n^3-2n-1\right)\)

\(A=2n^3+6n^2+4n-n^2-3n-2-2n^3+4n+2\)

\(A=5n^2+5n\)

\(A=5n\left(n+1\right)\)

\(\text{Vì 5⋮5 nên 5n(n+1)⋮5}\)(1)

\(\text{Vì n;n+1 là hai số tự nhiên liên tiếp nên n(n+1)⋮2}\)

\(\Rightarrow5n\left(n+1\right)⋮2\)(2)

\(\text{Từ (1) và (2)}\Rightarrow5n\left(n+1\right)⋮10\text{ vì (2,5)=1}\)

\(\text{Vậy A⋮10}\)