( x- 2019 ) . ( x- 2020 ) = 0
bạn nào làm được mình cho một like
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính nhanh.\(\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{57.40}\)
\(=5.\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{4}{37.40}\right)\)
\(=\frac{5}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{37}-\frac{1}{40}\right)\)
\(=\frac{5}{3}\left(\frac{1}{1}-\frac{1}{40}\right)\)
\(=\frac{5}{3}.\frac{39}{40}\)
\(=\frac{13}{8}\)
Rút gobj p/s
\(\frac{2019.2020+4038}{2022.2011-4044}\)
\(=\frac{2019.\left(2020+2\right)}{2020.\left(2011-2\right)}\)
\(=\frac{2019.2022}{2022.2019}\)
\(=\frac{1}{1}=1\)
Study well
Cho mk sorry nha dong thứ 2 từ trên cuống dưới phải là
\(5.\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{37.40}\right)\) nha
Sorry nhiều
Study well
ta có :\(E=\frac{2019^{2019}+1}{2019^{2020}+1}\Leftrightarrow2019\cdot E=\frac{2019^{2020}+2019}{2019^{2020}+1}=1+\frac{2019}{2019^{2020}+1}\)
\(F=\frac{2019^{2020}+1}{2019^{2021}+1}\Leftrightarrow2019\cdot F=\frac{2019^{2021}+2019}{2019^{2021}+1}=1+\frac{2019}{2019^{2021}+1}\)
vì \(\frac{2019}{2019^{2020}+1}>\frac{2019}{2019^{2021}+1}\) nên E>F
E=2019 x 2019 x 2019 x ........ x 2019 x2019 +1 /2019 x 2019 x 2019 x.........x 2019 x 2019 + 1
E=1+1/2019+1
E=2/2020
E=1/1010
F=2019 x 2019 x 2019 x .......... x 2019 x 2019 +1 / 2019 x 2019 x 2019 x ....... x 2019 x 2019 +1
F= 1+1/2019+1
F=2/2020
F=1/1010
từ đó ta có E=F(=1/1010)
Bài này dễ mà!
\(P\left(2019\right)=2019^3\left(a+2016\right)+2019\left(b+2017\right)+2018=2020\)
\(\Rightarrow2019^3\left(a+2016\right)+2019\left(b+2017\right)=2\)
Có: \(P\left(-2019\right)=-2019^3\left(a+2016\right)-2019\left(b+2017\right)+2018\)
\(=-\left[2019^3\left(a+2016\right)+2019\left(b+2017\right)\right]+2018\)
\(=-2+2018=2016\)
Ta có
1 x 2 x 3 x .... x 2019 x 2020 chữ số tận cùng là 0
1 x 3 x 5 x ... x 2017 x 2019 chữ số tận cùng là 5
Vậy A = 1 x 2 x 3 x .... x 2019 x 2020 - 1 x 3 x 5 x .... x 2017 x 2019 chữ số tận cùng sẽ là 5
a)\(M=\frac{2019\times2020-2}{2018+2018\times2020}=\frac{2019\times2020-2}{2018+2018\times2020+2020-2020}=\frac{2019\times2020-2}{\left(2018+1\right)\times2020+2018-2020}=\frac{2019\times2020-2}{2019\times2020-2}=1\\ N=\frac{-2019\times20202020}{20192019\times2020}=\frac{-2019\times10001\times2020}{2019\times10001\times2020}=-1\)
b)\(5\left|x-1\right|=3M-2N=5\\ \left|x-1\right|=1\Rightarrow\hept{\begin{cases}x-1=1\Rightarrow x=2\\x-1=-1\Rightarrow x=0\end{cases}}\)
\(y=\dfrac{1}{3x^2-x-2}=\dfrac{1}{\left(x-1\right)\left(3x+2\right)}=\dfrac{1}{5}.\dfrac{1}{x-1}-\dfrac{3}{5}.\dfrac{1}{3x+2}\)
\(y'=\dfrac{1}{5}.\dfrac{\left(-1\right)^1.1!}{\left(x-1\right)^2}-\dfrac{3}{5}.\dfrac{\left(-1\right)^1.3^1.1!}{\left(3x+2\right)^2}\)
\(y''=\dfrac{1}{5}.\dfrac{\left(-1\right)^2.2!}{\left(x-1\right)^3}-\dfrac{3}{5}.\dfrac{\left(-1\right)^2.3^2.2!}{\left(3x+2\right)^3}\)
\(\Rightarrow y^{\left(n\right)}=\dfrac{1}{5}.\dfrac{\left(-1\right)^n.n!}{\left(x-1\right)^{n+1}}-\dfrac{3}{5}.\dfrac{\left(-1\right)^n.3^n.n!}{\left(3x+2\right)^{n+1}}\)
\(\Rightarrow y^{\left(2019\right)}=\dfrac{1}{5}.\dfrac{\left(-1\right)^{2019}.2019!}{\left(x-1\right)^{2020}}-\dfrac{3}{5}.\dfrac{\left(-1\right)^{2019}.3^{2019}.2019!}{\left(3x+2\right)^{2019}}\)
\(=\dfrac{2019!}{5}\left(\dfrac{3^{2020}}{\left(3x+2\right)^{2020}}-\dfrac{1}{\left(x-1\right)^{2020}}\right)\)
\(\left(x-2019\right)\left(x-2020\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2019=0\\x-2020=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2019\\x=2020\end{cases}}\)
Vậy \(x\in\left\{2019;2020\right\}\)