K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=4x^2+4x+9\)

\(A=4\left(x^2+x+\dfrac{9}{4}\right)\)

\(A=4\left(x^2+2\cdot x\cdot0,5+0,25+2\right)\)

\(A=4\left(x+0,5\right)^2+8\)

\(4\left(x+0,5\right)^2\ge0\forall x\)

\(\Rightarrow4\left(x+0,5\right)^2+8\ge8\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=-0,5\)

Vậy \(MIN_A=8\Leftrightarrow x=-0,5\)

25 tháng 12 2018

\(A=4x^2+4x+9\)

\(A=4x^2+4x+1+8\)

\(A=\left(2x+1\right)^2+8\)

Vì (2x+1)2 + 8 \(\ge\) 0 \(\forall x\) => minA= 8

Dấu "x" xảy ra <=> 2x + 1 = 0

2x = 0 -1

2x = -1

x = \(\dfrac{-1}{2}\)

Vậy minA = 8 khi x = \(-\dfrac{1}{2}\)

// cậu tham khảo //

30 tháng 10 2017

5-/3x-4/

ta có: /3x-4/\(\ge0,\forall x\)

\(\Rightarrow\)5-/3x-4/\(\le5\)

Dấu "=" xảy ra khi 3x-4=0 =>3x=4 =>\(x=\frac{3}{4}\)

Vậy GTNL của 5-/3x-4/ là 5 với x=\(\frac{3}{4}\)

\(\left(4x-6\right)^{2008}+8\)

ta có: \(\left(4x-6\right)^{2008}\ge0,\forall x\)

\(\Rightarrow\left(4x-6\right)^{2008}+8\ge8\)

dấu "=" xảy ra khi (4x-6)2008=0

                           => 4x-6=0 =>4x=6 =>x=\(\frac{3}{2}\)

vậy GTNN của (4x-6)2008 là 8 với x=\(\frac{3}{2}\)

28 tháng 10 2016

A=x2+10x+35=x2+10x+25+10=x2+2*x*5+52+10=(x+5)2+10

Ta có: (x+5)2>=0(với mọi x)

=> (x+5)2+10>=10(với mọi x)

hay A>=10(với mọi x)

Do đó, GTNN của A là 10 khi: (x+5)2=0

x+5=0

x=0-5

x=-5

Vậy GTNN của A là 10 tại x=-5

28 tháng 10 2016

thanks bạn ạ

NV
3 tháng 8 2021

\(E=\left(x^2-4x+4\right)-9=\left(x-2\right)^2-9\ge-9\)

\(E_{min}=-9\) khi \(x=2\)

3 tháng 8 2021

\(E=x^{^{ }2}-4x-5=x^2-2.2x+2^2-9=\left(x-2\right)^2-9\)

=>MIN(E)=-9 

dấu '=' xảy ra <=>x-2=0=>x=2

vậy MIN (E)=-9 khi x=2

26 tháng 7 2019

Đặt \(C=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

\(=\left|2x-1\right|+\left|2x-3\right|\)

\(=\left|2x-1\right|+\left|3-2x\right|\)

\(\ge\left|\left(2x-1\right)+\left(3-2x\right)\right|=\left|2\right|=2\)

Vậy \(C_{min}=2\)

26 tháng 7 2019

#)Giải :

\(\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

\(=\left|2x-1\right|+\left|2x-3\right|\)

\(=\left|2x-1\right|+\left|3-2x\right|\ge\left|2x-1+3-2x\right|=2\)

Dấu ''='' xảy ra khi x = 1

NV
24 tháng 12 2020

\(A=4\left(x-1\right)+\dfrac{25}{x-1}+4\ge2\sqrt{\dfrac{100\left(x-1\right)}{x-1}}+4=24\)

Dấu "=" xảy ra khi \(x=\dfrac{7}{2}\)

Anh ơi giúp em vc này https://hoc24.vn/cau-hoi/admin-oi-xu-ly-ho-em-avt-cua-ban-nay-aban-theo-doi-em-nen-em-vao-xem-thu-trang-ca-nhan-va-tot-nhat-admin-nen-xem-se-hieuhttpshoc24vnviptienganhlamontu.330703432754

10 tháng 9 2017

a, Ta có: \(A=\left|x+2\right|+\left|9-x\right|\ge\left|X+2+9-x\right|=11\)

Dấu "=' xảy ra khi \(\left(x+2\right)\left(9-x\right)\ge0\Leftrightarrow-2\le x\le9\)

Vậy MinA = 11 khi -2 =< x =< 9

b, Vì \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow B=\frac{3}{4}-\left(x-1\right)^2\le\frac{3}{4}\)

Dấu "=" xảy ra khi x = 1

Vậy MaxB = 3/4 khi x=1

10 tháng 9 2017

Ta có :\(A=\left|x+2\right|+\left|9-x\right|\ge\left|x+2+9-x\right|=11\)

Vậy \(A_{min}=11\) khi \(2\le x\le9\)