\(\frac{3x+3}{3x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) Ta có: \(3x+2\sqrt{3x}+4=\left(\sqrt{3x}+1\right)^2+3>0;1+\sqrt{3x}>0,\forall x\ge0\), nên đk để A có nghĩa là
\(\left(\sqrt{3x}\right)^3-8-\left(\sqrt{3x}-2\right)\left(3x+2\sqrt{3x}+4\right)\ne0;x\ge0\Leftrightarrow\sqrt{3x}\ne2\Leftrightarrow0\le x\ne\frac{4}{3}\)
A=\(\left(\frac{6x+4}{\left(\sqrt{3x}\right)^3-2^3}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right)\left(\frac{1+\left(\sqrt{3x}\right)^3}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
\(=\left(\frac{6x+4-\left(\sqrt{3x}-2\right)\sqrt{3x}}{\left(\sqrt{3x}-2\right)\left(3x+2\sqrt{3x}+4\right)}\right)\left(3x-\sqrt{3x}+1-\sqrt{3x}\right)\)
\(=\left(\frac{3x+4+2\sqrt{3x}}{\left(\sqrt{3x}-2\right)\left(3x+2\sqrt{3x}+4\right)}\right)\left(3x-2\sqrt{3x}+1\right)\)
\(=\frac{\left(\sqrt{3x}-1\right)^2}{\sqrt{3x}-2}\left(0\le x\ne\frac{4}{3}\right)\)
b) \(A=\frac{\left(\sqrt{3x}-1\right)^2}{\sqrt{3x}-2}=\frac{\left(\sqrt{3x}-2\right)^2+2\left(\sqrt{3x}-2\right)+1}{\sqrt{3x}-2}=\sqrt{3x}+\frac{1}{\sqrt{3x}-2}\)
Với \(x\ge0\), để A là số nguyên thì \(\sqrt{3x}-2=\pm1\Leftrightarrow\orbr{\begin{cases}\sqrt{3x}=3\\\sqrt{3x}=1\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=9\\3x=1\end{cases}\Leftrightarrow}x=3}\) (vì \(x\in Z;x\ge0\))
Khi đó A=4

Đề sai r kìa ... Sửa lại theo ý mình nhé !
Hệ \(\hept{\begin{cases}\frac{3x}{\sqrt{3x+2}}-\frac{x}{y-3}=5\\\frac{2x}{\sqrt{3x+2}}+\frac{3x}{y-3}=7\end{cases}}\)(chỗ này cx có thể sửa thành 3x-2)
\(ĐKXĐ:\hept{\begin{cases}x>-\frac{2}{3}\\y\ne3\end{cases}}\)
Đặt \(\hept{\begin{cases}\frac{x}{\sqrt{3x+2}}=a\\\frac{x}{y-3}=b\end{cases}}\)
Hệ đã cho tương đương với hệ sau
\(\hept{\begin{cases}3a-b=5\\2a+3b=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}9a-3b=15\\2a+3b=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}11a=22\\2a+3b=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=2\\2a+3b=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=2\\b=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{\sqrt{3x+2}}=2\left(1\right)\\\frac{x}{y-3}=1\left(2\right)\end{cases}}\)
Giải (1) ta đc :
\(\left(1\right)\Leftrightarrow x=2\sqrt{3x+2}\)
\(\Leftrightarrow\hept{\begin{cases}x>0\left(DoVP>0\forall x>-\frac{2}{3}\right)\\x^2=4\left(3x+2\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>0\\x^2-12x=8\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>0\\x^2-12x+36=44\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>0\\\left(x-6\right)^2=44\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>0\\x=\pm2\sqrt{11}+6\end{cases}}\)
\(\Leftrightarrow x=6+2\sqrt{11}\)
Thay vào (2) sẽ tìm đc y
P/S: Số xấu quá nên tớ chỉ làm đến đây thôi -,-

\(a)=\frac{-2\left(x+3\right)}{x\left(1-3x\right)}.\frac{1-3x}{x\left(x+3\right)}\)
\(=\frac{-2}{x^2}\)
\(b)=\frac{\left(x+3\right)\left(x-3\right)}{x\left(x-3\right)}-\frac{x^2}{x\left(x-3\right)}+\frac{9}{x\left(x-3\right)}\)
\(=\frac{x^2-3x+3x-9-x^2+9}{x\left(x-3\right)}\)
\(=x\left(x-3\right)\)
\(c)=\frac{x+3}{\left(x-1\right)\left(x+1\right)}-\frac{1}{x\left(x+1\right)}\)
\(=\frac{\left(x+3\right).x}{x\left(x-1\right)\left(x+1\right)}-\frac{1.\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^2+3x-x+1}{x\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x\left(x+3\right)-\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x+3}{x+1}\)
# Sắp ik ngủ nên làm vậy hoi, ko chắc phần kq câu b và c đâu nha

3x -2/4 = 36/3x-2
<=> (3x - 2 )2 = 36 × 4
<=> ( 3x -2)2 = 122
=> 3x - 2 = 12
<=> 3x = 14
<=> x = 14/3
b/ 3x-2 /2 = x-3/3
<=> (3x -2 )×3 = ( x-3) ×2
<=> 9x - 6 = 2x - 6
<=> 9x -2x = -6 +6
<=> 7x = 0
<=> x = 0
Vậy x = 0
1) 3x - 2/4 = 36/3x - 2
(3x - 2)(3x - 2) = 4.36
(3x - 2)2 = 144
(3x - 2)2 = 122
3x - 2 = -+12
3x - 2 = 12 hoặc 3x - 2 = -12
3x = 12 + 2 3x = -12 + 2
3x = 14 3x = -10
x = 14/3 x = -10/3

= \(\left[\frac{x.\left(x+3\right)}{\left(x+3\right).\left(x^2+9\right)}+\frac{3}{x+9}\right]:\left[\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right]\) ]
\(=\frac{x+3}{x^2-9}.\frac{\left(x-3\right).\left(x^2+9\right)}{x^2+9-6x}\)
= \(\frac{\left(x-3\right).\left(x+3\right)}{\left(x-3\right)^2}\)
= \(\frac{x+3}{x-3}\)
k mik nhé. Plssss~

b) \(\left[\frac{2}{3x}-\frac{2}{x+1}.\left(\frac{x+1}{3x}-x-1\right)\right]:\frac{x-1}{x}\)
\(=\left[\frac{2}{3x}-\frac{2}{x+1}.\left(\frac{x+1}{3x}-\left(x+1\right)\right)\right]:\frac{x-1}{x}\)
\(=\left[\frac{2}{3x}-\frac{2}{x+1}.\left(x+1\right)\left(\frac{1}{3x}-1\right)\right]:\frac{x-1}{x}\)
\(=\left[\frac{2}{3x}-2\left(\frac{1}{3x}-1\right)\right]:\frac{x-1}{x}\)
\(=\left[\frac{2}{3x}-\frac{2}{3x}+2\right]:\frac{x-1}{x}\)
\(=2.\frac{x}{x-1}=\frac{2x}{x-1}\left(đpcm\right)\)
a) \(\left(\frac{9}{x^3-9x}+\frac{1}{x+3}\right):\left(\frac{x-3}{x^2+3x}-\frac{x}{3x+9}\right)\)
\(=\left(\frac{9}{x\left(x^2-9\right)}+\frac{1}{x+3}\right):\left(\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right)\)
\(=\left(\frac{9}{x\left(x+3\right)\left(x-3\right)}+\frac{x^2-3x}{x\left(x+3\right)\left(x-3\right)}\right)\)
\(:\left(\frac{3x-9}{3x\left(x+3\right)}-\frac{x^2}{3x\left(x+3\right)}\right)\)
\(=\frac{x^2-3x+9}{x\left(x+3\right)\left(x-3\right)}:\frac{-x^2+3x-9}{3x\left(x+3\right)}\)
\(=\frac{x^2-3x+9}{x\left(x+3\right)\left(x-3\right)}.\frac{3x\left(x+3\right)}{-x^2+3x-9}\)
\(=\frac{x^2-3x+9}{x-3}.\frac{3}{x^2+3x-9}\)
\(=\frac{x^2-3x+9}{3-x}.\frac{3}{x^2-3x+9}\)
\(=\frac{3}{3-x}\left(đpcm\right)\)
\(\frac{3x+3}{3x}\)
\(=\frac{3\left(x+1\right)}{3x}\)
\(=\frac{x+1}{x}\)
Trả lời :.................................................
\(\frac{3x+3}{3x}\)
\(=\frac{3\left(x+1\right)}{3x}\)
\(=\frac{x+1}{x}\)
Hk tốt,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
k nhé