K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2018

Gỉa sử cạnh AB , BC , AC lần lượt có phương trình (1),(2),(3) ta có:

\(a_{AB}=\frac{-1}{2}\)

\(a_{BC}=-2\)

\(a_{AC}=\frac{1}{2}\)

Lại có: \(a_{AC}.a_{BC}=-1\)

\(\Rightarrow\Delta ABC\)vuông tại\(C\)

Cạnh AB là đường kính của đường tròn ngoại tiếp

Xác định tọa độ của A và B , ta có:

\(A\left(-2;2\right)\)            \(B\left(8;-3\right)\)

Do đó: \(AB=\sqrt{\left(8+2\right)^2+\left(-3-2\right)^2}\)

\(\Rightarrow AB=\sqrt{125}\approx11,2\)

Vậy:   \(R=\frac{AB}{2}=\frac{11,2}{2}\approx5,6\)

21 tháng 8 2019

Bằng việc lần lượt giải các hệ phương trình bậc nhất hai ẩn, ta có tọa độ các đỉnh của tam giác là  A − 4 7 ; 16 7 ,   B − 10 11 ; 14 11 ,   C − 8 ; 6   .

Ta có công thức tính diện tích tam giác ABC là: S = 1 2 . d A ,   B C .   B C = 1 2 2. − 4 7 + 3. 16 7 − 2 13 . − 8 + 10 11 2 + 6 − 14 11 2 = 338 77

Đáp án là phương án C.

NV
5 tháng 3 2023

Tọa độ A là nghiệm: \(\left\{{}\begin{matrix}x-y-2=0\\x+2y-5=0\end{matrix}\right.\) \(\Rightarrow A\left(3;1\right)\)

\(\left\{{}\begin{matrix}x_A+x_B+x_C=3x_G\\y_A+y_B+y_C=3y_G\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_B+x_C=6\\y_B+y_C=5\end{matrix}\right.\) (1)

B thuộc AB nên: \(x_B-y_B=2\Rightarrow x_B=y_B+2\)

C thuộc AC nên: \(x_C+2y_C-5=0\Rightarrow x_C=-2y_C+5\)

Thế vào (1) \(\Rightarrow\left\{{}\begin{matrix}y_B+2-2y_C+5=6\\y_B+y_C=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y_B=3\Rightarrow x_B=5\\y_C=2\Rightarrow x_C=1\end{matrix}\right.\)

Phương trình BC: \(\dfrac{x-5}{1-5}=\dfrac{y-3}{2-3}\Leftrightarrow x-4y+7=0\)

26 tháng 5 2016

Tìm ra 3 đỉnh tam giác và độ dài 3 cạnh tam giác sau đó dùng pytago đảo

9 tháng 4 2021

1.

A có tọa độ là nghiệm hệ: \(\left\{{}\begin{matrix}x-y-2=0\\7x-y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\Rightarrow A=\left(-1;-3\right)\)

Phương trình đường thẳng AB: \(\dfrac{x+1}{-5}=\dfrac{y+3}{7}\Leftrightarrow7x-5y+22=0\)

Đường thẳng BC đi qua B và vuông góc với AH có phương trình: \(x+7y-22=0\)

 

2 tháng 6 2016

Ta giả sử: 

\(\hept{\begin{cases}AB:y=-\frac{x}{2}+\frac{13}{2}\\BC:y=-2x+13\\CA:y=\frac{x}{2}+3\end{cases}}\)

Ta thấy hệ số góc của BC và CA có tích bằng -1 nên BC vuông góc CA, hay tam giác ABC vuông tại C.

Như vậy đường tròn ngoại tiếp tam giác ABC là đường tròn đường kính AB.

Giải hệ \(\hept{\begin{cases}x+2y-13=0\\2x+y-13=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{13}{3}\\y=\frac{13}{3}\end{cases}}\) ta được \(B\left(\frac{13}{3};\frac{13}{3}\right)\)

Giải hệ \(\hept{\begin{cases}x+2y-13=0\\x-2y+6=0\end{cases}}\) ta được tọa độ A. 

Dùng công thức tính khoảng cách AB, ta tìm đc đường kính, sau ra suy ra bán kính em nhé :))

2 tháng 6 2016

dạ vâng, em cám ơn cô nhiều ạ

12 tháng 3 2021

H là trực tâm của tam giác nhỉ.

A có tọa độ là nghiệm của hệ\(\left\{{}\begin{matrix}2x-y+2=0\\x-2y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\Rightarrow A\left(-1;0\right)\)

B có tọa độ là nghiệm của hệ\(\left\{{}\begin{matrix}2x-y+2=0\\x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\Rightarrow B\left(0;2\right)\)

H có tọa độ là nghiệm của hệ\(\left\{{}\begin{matrix}x-2y+1=0\\x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{2}\end{matrix}\right.\Rightarrow H\left(0;\dfrac{1}{2}\right)\)

Phương trình đường thẳng AC: \(y=0\)

Phương trình đường thẳng CH: \(x+2y-1=0\)

C có tọa độ là nghiệm của hệ \(\left\{{}\begin{matrix}y=0\\x+2y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\Rightarrow H\left(1;0\right)\)