K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2015

Câu tương tự        

11 tháng 1 2019

1) Ta có: 3n2+3n

= 3(n2+n) \(⋮\) 3

Vì n là STN nên:

TH1: n là số tự nhiên lẻ.

\(\Rightarrow\)n2 sẽ lẻ \(\Rightarrow\) n2+n bằng lẻ cộng lẻ và bằng chẵn \(\Rightarrow\) n2+n \(⋮\) 2 \(\Rightarrow\) 3(n2+n) \(⋮\) 2

\(\Rightarrow\) 3n2+3n \(⋮\) 2

Vì 3n2+3n chia hết cho 3 và cũng chia hết cho 2 nên số đó chia hết cho 6.

TH2: n là số tự nhiên chẵn.

\(\Rightarrow\) n2 sẽ chẵn \(\Rightarrow\) n2+n bằng chẵn cộng chẵn bằng chẵn \(\Rightarrow\) n2+n \(⋮\) 2\(\Rightarrow\)

3(n2+n) \(⋮\) 2\(\Leftrightarrow\) 3n2+3n \(⋮\) 2

Vì 3n2+3n chia hết cho 3 và chia hết cho 2 nên số đó chia hết cho 6.

Vậy với mọi trường hợp số tự nhiên thì 2n2+3n đều chia hết cho 6. Vậy với mọi n là số tự nhiên thì 2n2+3n sẽ chia hết cho 6 (đpcm)

23 tháng 8 2022

3)

Gọi 5 số tự nhiên liên tiếp là k; k+1; k+2; k+3; k+4

\RightarrowTích của chúng là k(k+1)(k+2)(k+3)(k+4)

Trong 5 số tự nhiên liên tiếp có ít nhất 2 số chẵn liên tiếp. Mà tích 2 số chẵn liên tiếp 8\Rightarrowk(k+1)(k+2)(k+3)(k+4)⋮8(1)

Trong 5 số tự nhiên liên tiếp có ít nhất 1 số ⋮5\Rightarrowk(k+1)(k+2)(k+3)(k+4)⋮5                                                                 (2)

Trong tích 5 số tự nhiên liên tiếp có tích của 3 số tự nhiên liên tiếp mà tích của 3 số tự nhiên liên tiếp⋮3\Rightarrowk(k+1)(k+2)(k+3)(k+4)⋮3                                                                                                                                                                                           (3)

Từ (1),(2),(3) và ƯCLN(3;5;8)=1\Rightarrowk(k+1)(k+2)(k+3)(k+4)⋮3.5.8=120

Vậy tích của 5 số tự nhiên liên tiếp ⋮120

12 tháng 4 2017

10^(3n-1) hay là \(10^{3n}-1\)

12 tháng 4 2017

cai thu 2

30 tháng 7 2015

a)38-3n chia hết cho n

=>38 chia hết cho n hay n thuộc Ư(38)={1;2;19;38}

b)n+5 chia hết cho n+1

=>n+1+4 chia hết cho n+1

=>4 chia hết cho n+1 hay n+1 thuộc Ư(4)={1;2;4}

=>n thuộc{0;1;3}

c)3n+4 chia hết cho n-1

3(n-1)+7chia hết cho n-1

=>7 chia hết cho n-1 hay n-1 thuộc Ư(7)={1;7}

=> n thuộc{2;8}

d)3n+2 chia hết cho n-1

3(n-1)+5 chia hết cho n-1

=>5 chia hết cho n-1 hay n-1 thuộc Ư(5)={1;5}

=>n thuộc{2;6}

có j ko hiểu hỏi mk

29 tháng 9 2019

a) n(n + 5) - (n - 3)(n + 2) = n2 + 5n - n2 - 2n + 3n + 6 = 6n + 6 = 6(n + 1) \(⋮\)\(\forall\)\(\in\)Z

b) (n2 + 3n - 1)(n + 2) - n3  + 2 = n3 + 2n2 + 3n2 + 6n - n - 2 - n3 + 2 = 5n2 + 5n = 5n(n + 1) \(⋮\)\(\forall\)\(\in\)Z

c) (6n + 1)(n + 5) - (3n + 5)(2n - 1) = 6n2 + 30n + n + 5 - 6n2 + 3n - 10n + 5 = 24n + 10 = 2(12n + 5) \(⋮\)\(\forall\)\(\in\)Z

d) (2n - 1)(2n + 1) - (4n - 3)(n - 2) - 4 = 4n2 - 1 - 4n2 + 8n + 3n - 6 - 4 = 11n - 11 = 11(n - 1) \(⋮\)11 \(\forall\)\(\in\)Z

18 tháng 12 2023

a, 4n + 5 ⋮ n  ( n \(\in\) N*)

           5 ⋮  n

\(\in\)Ư(5) = {-5; -1; 1; 5}

Vì n \(\in\) N nên n \(\in\) {1; 5}

b, 38 - 3n ⋮ n  (n \(\in\) N*)

     38 ⋮ n

\(\in\) Ư(38)

38 =  2.19

Ư(38) = {-38; -19; -2; -1; 1; 2; 19; 38}

Nì n \(\in\) N* nên n \(\in\) {1; 2; 19; 38}

18 tháng 12 2023

c, 3n + 4  ⋮ n - 1 ( n \(\in\) N; n ≠ 1)

   3(n - 1) + 7 ⋮ n - 1  

                   7 ⋮ n  -1

  n - 1 \(\in\) Ư(7) = {-7; -1; 1; 7}

lập bảng ta có:

n - 1 -7 -1 1 7
n -6 (loại) 0 2

8

 

Theo bảng trên ta có n \(\in\) {0 ;2; 8}

 

5 tháng 7 2016

bài tập về nhà mà đem hỏi à

5 tháng 7 2016

a) 38-3n : n =-3+38/n  vậy n là Ư(38) nên n = 1 ; 2 ; 19 ; 38

b) ( n+5 ) : ( n + 1 ) hay ( n +1 + 4 ) : (n+1)  vậy n+1 là Ư(4) nên n+1 = 1 ; 2 ; 4. Vậy n = 0;1;3 

c) ( 3n + 4 ) :(  n + 1 ) hay ( 3n + 1 + 3 ) : ( n + 1 ) vậy n + 1 là Ư(3) nên n + 1 = 1;3. Vậy n = 0;2

d) ( 2n + 1 ) : ( 16 - 3n ) hay 3(2n+1) : ( 16 - 3n ) hay 3(2n + 1 ) : 2(16 - 3n ) hay ( 6n + 3 ) : ( 32 - 6n ). Vậy ( 6n + 3 + 32 - 6n ) chia hết cho 16 - 3n hay 35 chia hết cho ( 16 - 3n ). 16 - 3n là Ư ( 35 ). Vậy 16 -3n  = 1;5;7;35. n = 5;3 là thích hợp.