cho số tự nhiên có 2 chữ số ab.Biết rằng ab+ba là một số chính phương ( số viết được dưới dạng bình phương của một số tự nhiên).số các số tìm được là?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
64 là số chính phương vì \(64=8^2\) và \(8\in\mathbb{N}\)
Bài 2 :
a+b=5 <=> ( a+b)2=52
<=> a2+ab+b2=25
Hay : a2+1+b2=25
<=> a2+b2=24
Bài 4 : Gọi 2 số tự nhiên lẻ liên tiếp lần lượt là : a, a+2 ( a lẻ , a thuộc N 0
Theo bài ra , ta có : ( a+2)2-a2= 56
<=> a2+4a+4-a2=56
<=> 4a=56-4
<=> 4a=52
<=> a=13
Vậy 2 số tự nhiên lẻ liên tiếp là : 13; 15
giải : gọi số cần tìm là ab (a khác 0; a,b<10)
ta có : ab+ba=10a+b+10b+aq=11a+11b=11(a+b)
vì a+b là số chính phương nên a+b chia hết cho 11
mà 1 lớn hơn hoặc bằng a <10
0 lớn hơn hoặc bằng b<10
= 1 lớn hơn hoặc bằng a+b<20
=a+b=11
ta có bảng sau :
a | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
b | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 |
vậy có 8 số thỏa mãn đề bài
Cách 1: Tách số hạng thứ hai
x2 – 6x + 8 = x2 – 2x – 4x + 8
= x(x – 2) – 4( x – 2)
= (x – )(x – 4).
Cách 2: Tách số hạng thứ 3
x2 - 6x + 8 = x2 – 6x + 9 – 1
= (x – 3)2 – 1 = ( x – 3 – 1)(x – 3 + 1)
= (x – 4)( x – 2).
Cách 3: x2 – 6x + 8 = x2 – 4 – 6x + 12
= ( x – 2)(x + 2) – 6(x – 2)
= (x – 2)(x – 4)
\(a=111...1=\frac{10^{2n}-1}{9}=\frac{10^{2n}}{9}-\frac{1}{9}\)
\(b=222...2=\frac{2\left(10^n-1\right)}{9}=\frac{2.10^n}{9}-\frac{2}{9}\)
\(a-b=\frac{10^{2n}}{9}-\frac{1}{9}-\frac{2.10^n}{9}+\frac{2}{9}=\left(\frac{10^n}{3}\right)^2-2.\frac{10^n}{3}.\frac{1}{3}+\left(\frac{1}{3}\right)^2=\)
\(=\left(\frac{10^n}{3}-\frac{1}{3}\right)^2\) Là 1 số chính phương
Ta có: ab + ba
= ( 10a + b) + ( 10b + a)
= 11a + 11b = 11 . ( a + b)
Ta đã biết số chính phương chỉ chứa các thừa số nguyên tố với số mũ chẵn, không chứa các thừa số nguyên tố với số mũ lẻ nên để ab + ba là số chính phương thì a + b = 11. k2 ( k thuộc N)
Do a,b là chữ số và a khác 0 nên 1 <= a + b <= 18
=> a + b = 11 = 2 + 9 = 3 + 8 = 4 + 7 = 5 + 6
Vậy số cần tìm là 29 ; 38 ; 47 ; 56 ; 65 ; 74 ; 83 ; 92