K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2022

b: Xét ΔBDH vuông tại D và ΔBEC vuông tại E có

góc EBC chug

Do đo: ΔBDH đồng dạng với ΔBEC

=>BD/BE=BH/BC

=>BH*BE=BD*BC

Xét ΔCDH vuông tại D và ΔCFB vuông tại F có

góc FCB chung

Do đó; ΔCDH đồng dạng với ΔCFB

=>CD/CF=CH/CB

=>CD*CB=CH*CF

BH*BE+CH*CF=BD*BC+CD*CB=BC^2

c: góc HED=góc HCD

góc HEF=góc BAD

mà góc HCD=góc BAD

nên góc HED=góc HEF

=>EH là phân giác của góc FED(1)

góc EFH=góc DAC

góc DFH=góc EBC

mà góc DAC=góc EBC

nên góc EFH=góc DFH

=>FH là phân giác của góc EFD(2)

Từ (1), (2) suy ra H là tâm đường tròn nội tiếp ΔEFD

=>H cách đều ba cạnh của ΔFED

1 tháng 5 2023

< Bạn tự vẽ hình nha>

a)Xét ΔABE và  ΔACF, ta có:

góc A: chung

góc F=góc E= 90o

Vậy  ΔABE ∼  ΔACF (g.g)

b)Xét  ΔHEC và  ΔHFB là:

góc H: chung

H1=H2(đối đỉnh)

Vậy  ΔHEC∼ ΔHFB (g.g)

\(\dfrac{HE}{HF}\)=\(\dfrac{HC}{HB}\)⇔HE.HB=HF.HC

<Mình chỉ biết đến đó thôi>bucminh