cho góc xOy và tia Am
Vẽ cung tròn tâm O bán kính r,cung này cắt Ox,Oy theo thứ tự ở B,C.Vẽ cung tròn tâm A bán kính r,cung nàycắt Am ở D
Vẽ cung tròn tâm D có bán kính bằng BC,cung này cắt cung tròn tâm A bán kính r ở E
Chứng minh rằng góc DAE=xOy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác OBC và tam giác AED có
OB = AE (GT)
OC = AD (GT)
BC = ED (GT)
=> tam giác OBC = tam giác AED
=> góc xOy = góc DAE (2 góc tương ứng)
Vậy góc xOy = góc DAE
Kí hiệu: (O ;r) là đường tròn tâm O bán kính r.
B, C thuộc (O; r) nên OB = OC = r.
D thuộc (A;r) nên AD = r.
E thuộc (D; BC) và (A;r) nên AE = r, DE = BC.
Xét OBC và ADE có:
OB = AD (cùng bằng r)
OC = AE (cùng bằng r)
BC = DE
Nên ΔOBC = ΔADE (c.c.c)
Xét tam giác DAE và tam giác BOC:
AD=OB(gt)
DE=BC(gt)
AE=OC(gt)
nên tam giác DAE= tam giác BOC( HAI GÓC TƯƠNG ỨNG)
NÊN ..............
Tam giác DAE và BOC có:
AD=OB(gt)
DE=BC(gt)
AE=OC(gt)
Nên ∆ DAE= ∆ BOC(c.c.c)
suy ra \(\widehat{DAE}\)=\(\widehat{BOC}\)(hai góc tương tứng)
vậy
\(\widehat{DAE}\)=\(\widehat{xOy}\).
Xét tam giác OBC và tam giác AED có:
OB = AE (GT)
OC = AD (GT)
BC = ED (GT)
=> tam giác OBC = tam giác AED (c.c.c)
=> \(\widehat{xOy}\)=\(\widehat{DAE}\) (đpcm)