Chứng tỏ a=3+3^2+3^3+3^4+....+3^20 chia hết cho 4 cho 40
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3+3^2+3^3+3^4+...+3^{20}\)
\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{19}+3^{20}\right)\)
\(A=3.\left(1+3\right)+3^3.\left(1+3\right)+...+3^{19}.\left(1+3\right)\)
\(A=3.4+3^3.4+...+3^{19}.4\)
\(A=4.\left(3+3^3+...+3^{19}\right)\)
\(\Rightarrow A⋮4\)
\(A=3+3^2+...+3^{20}\)
\(A=\left(3+3^2+3^3+3^4\right)+...+\left(3^{17}+3^{18}+3^{19}+3^{20}\right)\)
\(A=3.\left(1+3+3^2+3^3\right)+...+3^{17}.\left(1+3+3^2+3^3\right)\)
\(A=3.40+...+3^{17}.40\)
\(A=40.\left(3+...+3^{17}\right)\)
\(\Rightarrow A⋮40\)
A=3(1+3)+32(1+3)+....+319(1+3)
=4(3+32+...+319)
A chia hết cho 4
A=3(1+3+32+33)+...+317(1+3+32+33)
=3.40+....+317.40
=40(3+...+317)
A chia hết cho 40
\(A=3+3^2+...+3^{101}+3^{102}\) (thêm 33 bi sót)
\(\Rightarrow A+1=1+3+3^2+...+3^{101}+3^{102}\)
\(\Rightarrow A+1=\dfrac{3^{102+1}-1}{3-1}\)
\(\Rightarrow A+1=\dfrac{3^{103}-1}{2}\)
\(\Rightarrow A=\dfrac{3^{103}-1}{2}-1\)
\(\Rightarrow A=\dfrac{3\left(3^{102}-1\right)}{2}\)
mà \(\left(3^{102}-1\right)\) không chia hết cho 2;4;5
\(\Rightarrow A=\dfrac{3\left(3^{102}-1\right)}{2}\) không chia hết cho 2;4;5
\(\Rightarrow A\) không chia hết cho 40 \(\left(vì40=2.4.5\right)\)
\(B=4+4^2+4^3+...+4^{99}\)
\(\Rightarrow B=4\left(1+4^1+4^2\right)+4^4\left(1+4^1+4^2\right)...+4^{97}\left(1+4^1+4^2\right)\)
\(\Rightarrow B=4.21+4^4.21+...+4^{97}.21\)
\(\Rightarrow B=21\left(4+4^4+...+4^{97}\right)⋮21\)
\(\Rightarrow dpcm\)
a) S = 2 + 22 + 23 + 24 +.....+ 29 + 210
= (2 + 22) + (23 + 24) +.....+ (29 + 210)
= 2(1 + 2) + 23(1 + 2) +....+ 29(1 + 2)
= 3.(2 + 23 +.... + 29) chia hết cho 3
=> S = 2 + 22 + 23 + 24 +.....+ 29 + 210 chia hết cho 3 (Đpcm)
b) 1+32+33+34+...+399
=(1+3+32+33)+....+(396+397+398+399)
=40+.........+396.40
=40.(1+....+396) chia hết cho 40 (đpcm)
\(B=4+4^2+4^3+...+4^{20}\)
\(=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{19}+4^{20}\right)\)
\(=4.\left(1+4\right)+4^3.\left(1+4\right)+....+4^{19}.\left(1+4\right)\)
\(=5.\left(4+4^3+...+4^{19}\right)⋮5\)
Vậy B chia hết cho 5
\(C=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{19}+7^{20}\right)\)
\(=7.\left(1+7\right)+7^3.\left(1+7\right)+....+7^{19}.\left(1+7\right)\)
\(=7.8+7^3.8+...+7^{19}.8\)
\(=8.\left(7+7^3+...+7^{19}\right)⋮8\)
Vậy C chia hết cho 8