cho tam giác ABC đường cao AH gọi E,F là trung điểm AC,HC.Q đối xứng A qua H
a.c/m tg AHQC là hbh
b.Tính diện tích CHQ,biết AC=13cm,FC=6cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác AHCE có
D là trung điểm của AC
D là trung điểm của HE
Do đó: AHCE là hình bình hành
mà \(\widehat{AHC}=90^0\)
nên AHCE là hình chữ nhật
\(S_{AHCE}=AH\cdot HC=6\cdot8=48\left(cm^2\right)\)
tui chỉ làm phần d thôi nha, mấy câu trên cậu tự chứng minh nhé
Hình tự vẽ
Lấy M là trung điểm của CK
mà có I là tđ của HK
suy ra MI là đường trung bình tam giác HKC và MI song song với CH
mà CH lại vuông góc với HF ( tự c/m) nên MI vuông góc với HF
Xét tam giác HFM có I là trực tâm ( tự ghi rõ ) suy ra FI vuông góc với HM mà có
M là tđ CK, H là tđ BC ( tự c/m) suy ra đường trung bình nên HM song song với BK suy ra đpcm
tui chỉ ghi qua thui, cậu tự trình bày rõ ràng nhé
mấy cái tự c/m ko dài đâu, đều hiện lên trên hình cậu vẽ rùi, đều có sẵn chỉ cần vài dòng thui, đừng lười, THI TỐT NHẾ
MAI TUI THI TOÁN VỚI ANH ĐÓ, THANKS VÌ ĐỀ BÀI RẤT HAY NHA.
a: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
nên ABCD là hình bình hành
b: Xét tứ giác AEBC có
N là trung điểm chung của AB và EC
nên AEBC là hình bình hành
=>AE//BC và AE=BC
=>AD//AE và AD=AE
=>A là trung điểm của DE
b: Xét tứ giác AHBQ có
M là trung điểm của AB
M là trung điểm của HQ
Do đó: AHBQ là hình bình hành
mà \(\widehat{AHB}=90^0\)
nên AHBQ là hình chữ nhật
a: \(S_{ABC}=\dfrac{1}{2}\cdot8\cdot4=16\left(cm^2\right)\)
b: Xét tứ giác AHBE có
M là trung điểm chung của AB và HE
góc AHB=90 độ
=>AHBE là hình chữ nhật
c: Xét tứ giác ABFC có
H là trung điểm chung của AF và BC
AB=AC
=>ABFC là hình thoi
a: Xét tứ giác AHCE có
D là trung điểm chung của AC và HE
góc AHC=90 độ
Do đó: AHCE là hình chữ nhật
b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)
=>BC=2*BH=6cm
\(S_{ABC}=\dfrac{1}{2}\cdot6\cdot4=2\cdot6=12\left(cm^2\right)\)