Tim mọi số nguyên x sao cho
\(3n^3+10n^2-8\) chia hết cho \(3n+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co : 3.n^3+10.n^2-5
=3.n^3+9.n^2+3n-3n-1-4
=n^2.(3n+1)+3n(3n+1)-(3n+1)-4
=(3n+1)(n^2+3n-1)-4
De 3.=10.-5 chia het cho 3n+1
=> (3n+1)(3n-1)-4 chia het cho 3n+1
=> -4 chia het cho 3n+1
Ma U(-4)={-4;-2;-1;1;2;4}
=>3n+1={-4;-2;-1;1;2;4}
=>3n={-5;-3;-2;0;1;4}
=>n={5/3;-1;-2/3;0;1/3;1}
Ma n thuoc N
Vay n={-1;0;1}
lik e nhe
Ta có \(n^3+10n^2-5\)chia hết cho \(3n+1\)
Suy ra \(\frac{n^3+10n^2-5}{3n+1}\)là số nguyên
Ta thấy \(\frac{n^3+10n^2-5}{3n+1}\)
\(=\frac{n^3+9n^2+n^2-5}{3n+1}\)
\(=\frac{n^2.\left(1+3n\right)+n^2-5}{3n+1}\)
\(=n^2+\frac{n^2-5}{3n+1}\)
Tách tiếp cái phân số phía sau là ra nhé , lười @@
Ta có: \(3n^3+10n^2-5=\left(3n+1\right).\left(n^2+3n-1\right)-4\)
để \(3n^3+10n^2-5⋮3n+1\) thì \(4⋮3n+1\)
Tức là \(3n+1\) là ước của 4
\(\Rightarrow\left(3n+1\right)\in\left\{-4;-2;-1;1;2;4\right\}\)
\(3n+1=-4\Rightarrow n=\frac{-5}{3}\left(loai\right)\)
\(3n+1=-2\Rightarrow n=-1\)
\(3n+1=-1\Rightarrow n=\frac{-2}{3}\left(loai\right)\)
\(3n+1=1\Rightarrow n=0\)
\(3n+1=2\Rightarrow n=\frac{1}{3}\left(loai\right)\)
\(3n+1=4\Rightarrow n=1\)
Vậy.....................
1: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;4;2;-2;-1;-4\right\}\)
\(\Leftrightarrow3n\in\left\{0;3;-3\right\}\)
hay \(n\in\left\{0;1;-1\right\}\)
a: =>\(n+2\in\left\{1;-1;7;-7\right\}\)
=>\(n\in\left\{-1;-3;5;-9\right\}\)
b: =>n-3+4 chia hết cho n-3
=>\(n-3\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{4;2;5;1;7;-1\right\}\)
c: =>3n^3+n^2+9n^2-1-4 chia hết cho 3n+1
=>\(3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{0;-\dfrac{2}{3};\dfrac{1}{3};-1;1;-\dfrac{5}{3}\right\}\)
d: =>10n^2-10n+11n-11+1 chia hết cho n-1
=>\(n-1\in\left\{1;-1\right\}\)
=>\(n\in\left\{2;0\right\}\)
Ta có: \(3n^3+10n^2-5⋮3n+1\)
\(\Rightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)
\(\Rightarrow n^2\left(3n+1\right)+3n\left(3n+1\right)-\left(3n+1\right)-4⋮\left(3n+1\right)\)
\(\Rightarrow\left(3n+1\right)\left(n^2+3n-1\right)-4⋮3n+1\)
Vì \(3n+1⋮3n+1\) nên để \(\left(3n+1\right)\left(n^2+3n-1\right)-4⋮3n+1\) thì \(4⋮3n+1\)
\(\Rightarrow3n+1\inƯ\left(4\right)\)
\(\Rightarrow3n+1\in\left\{1;2;4;-1;-2;-4\right\}\)
\(\Rightarrow3n\in\left\{0;1;3;-2;-3;-5\right\}\)
\(\Rightarrow n\in\left\{0;\frac{1}{3};1;-\frac{2}{3};-1;-\frac{5}{3}\right\}\)
Mà \(n\in Z\Rightarrow n\in\left\{0;1;-1\right\}\)
Vậy \(n\in\left\{0;1;-1\right\}\)
= (3n^3 + 10n^2 - 5)/(3n + 1)
A = (3n^3 + n^2 + 9n^2 + 3n - 3n - 1 -4)/(3n+1)
A= n^2 + 3n - 1 - 4/(3n+1)
biểu thức 3n^3 + 10n^2 - 5 chia hết cho giá trị của biểu thức 3n + 1 khi:
3n+1 = ±1,±2, ±4
=> n = 0,-2/3,1/3,-1,1,-5/3
chọn giá trị nguyên: n = 0,-1,1
a, Khai trển phương trình :
(5n+2)^2 - 4 = (25n^2 + 2*2*5n + 2^2) - 4 = 25n^2 + 20n + 4 - 4
= 25n^2 + 20n = 5n(5n + 4)
--> (52+2)^2 - 4 = 5n(5n + 4) hiển nhiên chia hết cho 5.
lưu ý : (a+b)^2 = a^2 + 2ab + b^2
\(3n^3+10n^2-8⋮3n+1\)
\(3n^3+n^2+9n^2+3n-3n-1-7⋮3n+1\)
\(n^2\left(3n+1\right)+3n\left(3n+1\right)-\left(3n+1\right)-7⋮3n+1\)
\(\left(3n+1\right)\left(n^2+3n-1\right)-7⋮3n+1\)
Vì \(\left(3n+1\right)\left(n^2+3n-1\right)⋮3n+1\)
\(\Rightarrow7⋮3n+1\)
\(\Rightarrow3n+1\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\)
Tự làm nốt nhé
ta có: \(3\cdot n^3+10\cdot n^2-8=3\cdot n^3+n^2+9\cdot n^2+3\cdot n-3\cdot n-1-7=\)\(n^2\cdot\left(3\cdot n+1\right)+3\cdot n\cdot\left(3\cdot n+1\right)-\left(3n+1\right)-7\)\(⋮3\cdot n+1\Rightarrow7⋮3\cdot n+1\) \(\Rightarrow\)3*n+1 là ước của 7
\(\Rightarrow3\cdot n+1=\left\{-7;-1;1;7\right\}\Rightarrow n=\left\{0;2\right\}\)