K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2018

S=1+51+52+53+...+559

S=(1+51+52)+(53+54+55)+....+(557+558+559)

S=31+53.(1+5+52)+....+557.(1+5+52)

S=31+53.31+...+557.31

S=31.(1+53+...+557)

vì 31 chia hết cho 31 nên S chia hết cho 31

vậy S chia hết cho 31

28 tháng 8 2016

a) Ta có:
\(S=2+2^3+2^5+...+2^{59}\)

\(S=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{57}+2^{59}\right)\)

\(S=2.\left(1+2^2\right)+2^3.\left(1+2^2\right)+...+2^{57}.\left(1+2^2\right)\)

\(S=\left(2+2^3+2^5+...+2^{57}\right).5⋮5\)

Vậy \(S⋮5\)

28 tháng 8 2016

a) Ta có:

\(S=2+2^3+2^5+...+2^{99}\)

\(S=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{97}+2^{99}\right)\)

\(S=2\left(1+2^2\right)+2^3\left(1+2^2\right)+...+2^{97}\left(1+2^2\right)\)

\(S=2.5+2^3.5+...+2^{97}.5\)

\(S=\left(2+2^3+...+2^{97}\right).5⋮5\)

\(\Rightarrow S⋮5\)

 

19 tháng 7 2018

bạn ơi bạn chỉ cần biến đổi làm sao cho nguyên vế đó trở thành dạng 5 x ( ...)  hoặc là bạn nói nó là bội của 5 thì bạn sẽ kết luận được nó chia hết cho 5 nhé , còn chia hết cho 2 cũng vậy đấy !

bạn hãy nhân đa thức với đa thức nhé !

Mình hướng dẫn bạn rồi đấy ! ok!

k nha !

19 tháng 7 2018

Ai đó làm ơn giúp tớ đi, rất gấp đó !!!!!!!

1 tháng 1 2016

S=( 5+5^2+5^3)+....+(5^2011+5^2012+5^2013). Nhóm 3 số 1 bộ

S=5(1+5+5^2)+.....+5^2011(1+5+5^2)

S=5.31+.....+5^2011.31

S=31(5+....+5^2011) chia hết cho 31(đpcm)

Tick nhé.

Tiện thể cho mình hỏi cách viết số mũ lên cao thế nào vậy

1 tháng 1 2016

ĐỀ CÓ SAI K !? 
CÓ THÌ SỬA 
K THÌ MÌNH NGHĨ CHO

 

19 tháng 12 2015

a)A=2+2^2+2^3+...+2^60 chia hết cho 15

=>(2+2^2+2^3+2^4)+...+(2^57+2^58+2^59+2^60)

=>2.(1+2+2^2+2^3)+...+2^57+(1+2+2^2+2^3)

=>2.15+...+2^57.15

Vì 15 chia hết choo 15

=>a chia hết cho 15

b)B=1+5+5^2+5^3+...+5^56+5^59+5^98 chia hết cho 31

=>(1+5+5^2)+...+5^56.(1+5+5^2)

=>31+....+5^56.3vi2 31 chia hết cho 31

=>B chia hết cho 31

 

19 tháng 12 2015

Ta có : 
=2+2^2+2^3+...+2^60 = 2(1+2+2^2+2^3) + 2^5(1+2+2^2+2^3) + ... + 2^57(1+2+2^2+2^3) 
A=(2+2^5+...+2^57)*15 chia het cho 15 

31 tháng 8 2017

Số số hạng: (99-0):1+1=99(số hạng)

1+5+5^2+...+5^99=(1+5+5^2)+5^3x(1+5+5^2)+5^6x(1+5+5^2)+...+5^97x(1+5+5^2)      [vì có 99 số hạng chia hết cho 3]

                          =31+5^3x31+5^6x31+...+5^97x31=(1+5^3+5^6+...+5^97)x31 chia hết cho 31.

31 tháng 8 2017

Số số hạng là :

( 99 - 0 ) : 1 + 1 = 99 ( số hạng )

\(1+5+5^2\)\(+...+5^{99}\)\(=\)\(\left(1+5+5^2\right)+5^3\)\(.\)\(\left(1+5+5^2\right)\)\(+\)\(5^6\)\(.\)\(\left(1+5+5^2\right)\)\(+...+\)\(5^{99}\)\(.\)\(\left(1+5+5^2\right)\)      ( Vì có 99 số hạng chia hết cho 3 )

\(\Rightarrow\)\(31+5^3\)\(.\)\(31\)\(+\)\(5^6\)\(.\)\(31\)\(+...+\)\(5^{99}\)\(.\)\(31\)

\(=\)\(1+5+5^2\)\(+...+\)\(5^{99}\)\(.\)\(31\)chia hết cho \(31\)