Giúp mình với các bạn ơi
Chứng minh S =1+5^1+5^2+5^3+...+5^59 chia hết cho 31
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(S=2+2^3+2^5+...+2^{59}\)
\(S=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{57}+2^{59}\right)\)
\(S=2.\left(1+2^2\right)+2^3.\left(1+2^2\right)+...+2^{57}.\left(1+2^2\right)\)
\(S=\left(2+2^3+2^5+...+2^{57}\right).5⋮5\)
Vậy \(S⋮5\)
a) Ta có:
\(S=2+2^3+2^5+...+2^{99}\)
\(S=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{97}+2^{99}\right)\)
\(S=2\left(1+2^2\right)+2^3\left(1+2^2\right)+...+2^{97}\left(1+2^2\right)\)
\(S=2.5+2^3.5+...+2^{97}.5\)
\(S=\left(2+2^3+...+2^{97}\right).5⋮5\)
\(\Rightarrow S⋮5\)
bạn ơi bạn chỉ cần biến đổi làm sao cho nguyên vế đó trở thành dạng 5 x ( ...) hoặc là bạn nói nó là bội của 5 thì bạn sẽ kết luận được nó chia hết cho 5 nhé , còn chia hết cho 2 cũng vậy đấy !
bạn hãy nhân đa thức với đa thức nhé !
Mình hướng dẫn bạn rồi đấy ! ok!
k nha !
S=( 5+5^2+5^3)+....+(5^2011+5^2012+5^2013). Nhóm 3 số 1 bộ
S=5(1+5+5^2)+.....+5^2011(1+5+5^2)
S=5.31+.....+5^2011.31
S=31(5+....+5^2011) chia hết cho 31(đpcm)
Tick nhé.
Tiện thể cho mình hỏi cách viết số mũ lên cao thế nào vậy
a)A=2+2^2+2^3+...+2^60 chia hết cho 15
=>(2+2^2+2^3+2^4)+...+(2^57+2^58+2^59+2^60)
=>2.(1+2+2^2+2^3)+...+2^57+(1+2+2^2+2^3)
=>2.15+...+2^57.15
Vì 15 chia hết choo 15
=>a chia hết cho 15
b)B=1+5+5^2+5^3+...+5^56+5^59+5^98 chia hết cho 31
=>(1+5+5^2)+...+5^56.(1+5+5^2)
=>31+....+5^56.3vi2 31 chia hết cho 31
=>B chia hết cho 31
Số số hạng: (99-0):1+1=99(số hạng)
1+5+5^2+...+5^99=(1+5+5^2)+5^3x(1+5+5^2)+5^6x(1+5+5^2)+...+5^97x(1+5+5^2) [vì có 99 số hạng chia hết cho 3]
=31+5^3x31+5^6x31+...+5^97x31=(1+5^3+5^6+...+5^97)x31 chia hết cho 31.
Số số hạng là :
( 99 - 0 ) : 1 + 1 = 99 ( số hạng )
\(1+5+5^2\)\(+...+5^{99}\)\(=\)\(\left(1+5+5^2\right)+5^3\)\(.\)\(\left(1+5+5^2\right)\)\(+\)\(5^6\)\(.\)\(\left(1+5+5^2\right)\)\(+...+\)\(5^{99}\)\(.\)\(\left(1+5+5^2\right)\) ( Vì có 99 số hạng chia hết cho 3 )
\(\Rightarrow\)\(31+5^3\)\(.\)\(31\)\(+\)\(5^6\)\(.\)\(31\)\(+...+\)\(5^{99}\)\(.\)\(31\)
\(=\)\(1+5+5^2\)\(+...+\)\(5^{99}\)\(.\)\(31\)chia hết cho \(31\)
S=1+51+52+53+...+559
S=(1+51+52)+(53+54+55)+....+(557+558+559)
S=31+53.(1+5+52)+....+557.(1+5+52)
S=31+53.31+...+557.31
S=31.(1+53+...+557)
vì 31 chia hết cho 31 nên S chia hết cho 31
vậy S chia hết cho 31