K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2018

\(X^2+5X+4=0\)

\(\Rightarrow X^2+X+4X+4=0\)

\(\Rightarrow X\left(X+1\right)+4\left(X+1\right)=0\)

\(\Rightarrow\left(X+4\right)\left(X+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}X+4=0\\X+1=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}X=-4\\X=-1\end{cases}}\)

23 tháng 12 2018

\(x^2+5x+4=0\)

\(x^2+x+4x+4=0\)

\(x\left(x+1\right)+4\left(x+1\right)=0\)

\(\left(x+4\right)\left(x+1\right)=0\)

\(\Rightarrow x=\orbr{\begin{cases}-4\\-1\end{cases}}\)

Vậy \(S=\left\{-4;-1\right\}\)

2:

a: =>2x^2-4x-2=x^2-x-2

=>x^2-3x=0

=>x=0(loại) hoặc x=3

b: =>(x+1)(x+4)<0

=>-4<x<-1

d: =>x^2-2x-7=-x^2+6x-4

=>2x^2-8x-3=0

=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)

 

Đặt căn x^2+5x+6=a

=>a^2=x^2+5x+6

PT sẽ là a^2-2-3a+4=0

=>a^2-3a+2=0

=>a=1 hoặc a=2

=>x^2+5x+6=1 hoặc x^2+5x+6=4

=>\(x\in\left\{\dfrac{-5+\sqrt{5}}{2};\dfrac{-5-\sqrt{5}}{2};\dfrac{-5+\sqrt{17}}{2};\dfrac{-5-\sqrt{17}}{2}\right\}\)

a: \(\Leftrightarrow\left(x-\sqrt{5}\right)^2=0\)

\(\Leftrightarrow x-\sqrt{5}=0\)

hay \(x=\sqrt{5}\)

b: \(\Leftrightarrow4x^4-9x^2+4x^2-9=0\)

\(\Leftrightarrow4x^2-9=0\)

=>x=3/2hoặc x=-3/2

23 tháng 2 2021

Mình khuyên bạn thế này : 

Bạn nên tách những câu hỏi ra 

Như vậy các bạn sẽ dễ giúp

Và cũng có nhiều bạn giúp hơn !

23 tháng 2 2021

Bài 1.

a) ( x - 3 )( x + 7 ) = 0

<=> x - 3 = 0 hoặc x + 7 = 0

<=> x = 3 hoặc x = -7

Vậy S = { 3 ; -7 }

b) ( x - 2 )2 + ( x - 2 )( x - 3 ) = 0

<=> ( x - 2 )( x - 2 + x - 3 ) = 0

<=> ( x - 2 )( 2x - 5 ) = 0

<=> x - 2 = 0 hoặc 2x - 5 = 0

<=> x = 2 hoặc x = 5/2

Vậy S = { 2 ; 5/2 }

c) x2 - 5x + 6 = 0

<=> x2 - 2x - 3x + 6 = 0

<=> x( x - 2 ) - 3( x - 2 ) = 0

<=> ( x - 2 )( x - 3 ) = 0

<=> x - 2 = 0 hoặc x - 3 = 0

<=> x = 2 hoặc x = 3

16 tháng 3 2020

\(x^4+4x^3+5x^2-4x+4=0\)

\(\Leftrightarrow x^4+4x^3+4x^2+x^2-4x+4=0\)

\(\Leftrightarrow x^2\left(x+2\right)^2+\left(x-2\right)^2=0\)

Vì \(x^2\left(x+2\right)^2\ge0\forall x;\left(x-2^2\right)\ge0\forall x\)

\(\Rightarrow x^2\left(x+2\right)^2+\left(x-2\right)^2\ge0\)

Mà \(x^2\left(x+2\right)^2+\left(x-2\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x\left(x+2\right)=0\\x-2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=0;x=-2\\x=2\end{cases}}\)

Mà ko cùng một lúc tồn tại 2 giá trị của x

\(\Rightarrow\)Phương trình vô nghiệm

Vậy ...

NV
7 tháng 8 2021

Trừ vế cho vế:

\(x^2-y^2+5\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+5\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=x\\y=-x-5\end{matrix}\right.\)

Thế vào pt đầu:

\(\left[{}\begin{matrix}x^2-5x+4=0\\x^2-5\left(-x-5\right)+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x+4=0\\x^2+5x+29=0\left(vô-nghiệm\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=1\\x=4\Rightarrow y=4\end{matrix}\right.\)

29 tháng 3 2022

1.   3x( x - 2 ) - ( x - 2 ) = 0

<=> ( x-2).(3x-1)  = 0 => x = 2 hoặc x = \(\dfrac{1}{3}\)

2.    x( x-1 ) ( x2 + x + 1 ) - 4( x - 1 )

<=> ( x - 1 ).( x (x^2 + x + 1 ) - 4 ) = 0

(phần này tui giải được x = 1 thôi còn bên kia giải ko ra nha )

\(\left\{{}\begin{matrix}\sqrt{5}x-2y=7\\\sqrt{5}x-5y=10\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}y=-1\\x=\sqrt{5}\end{matrix}\right.\)

29 tháng 3 2022

\(1. 3x^2 - 7x +2=0\)

=>\(Δ=(-7)^2 - 4.3.2\)

        \(= 49-24 = 25\)

Vì 25>0 suy ra phương trình có 2 nghiệm phân biệt:

\(x_1\)=\(\dfrac{-\left(-7\right)+\sqrt{25}}{2.3}=\dfrac{7+5}{6}=2\)

\(x_2\)=\(\dfrac{-\left(-7\right)-\sqrt{25}}{2.3}=\dfrac{7-5}{6}=\dfrac{1}{3}\)