1+4^1 +4^2+.....+4^2022
ai giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(F=\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+2021\\ F=\left(x-y\right)^2+\left(y-1\right)^2+2021\ge2021\)
Dấu \("="\Leftrightarrow x=y=1\)
Vậy \(F_{min}=2021\)
\(\Rightarrow F=\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+2021\\ \Rightarrow F=\left(x-y\right)^2+\left(y-1\right)^2+2021\ge2021\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y\\y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
(1+1) + (1+2) + (1+2+3) + (1+2+3+4) + ... + (1+2+3+4+...+99)
Ta có thể nhận thấy rằng mỗi mục trong dãy có thể được biểu diễn dưới dạng tổng của các số từ 1 đến n, trong đó n tăng dần từ 1 đến 99. Vậy ta có thể viết lại dãy số ban đầu như sau:
(1) + (1+2) + (1+2+3) + (1+2+3+4) + ... + (1+2+3+4+...+99)
= (1) + (1+2) + (1+2+3) + (1+2+3+4) + ... + (1+2+3+4+...+99)
= 1*(1) + 2*(1+2) + 3*(1+2+3) + 4*(1+2+3+4) + ... + 99*(1+2+3+4+...+99)
= 1*(1) + 2*(1+2) + 3*(1+2+3) + 4*(1+2+3+4) + ... + 99*(1+2+3+4+...+99)
= 11 + 23 + 36 + 410 + ... + 99*(1+2+3+4+...+99)
= 11 + 2(1+2) + 3*(1+2+3) + 4*(1+2+3+4) + ... + 99*(1+2+3+4+...+99)
= 11 + 21 + 22 + 31 + 32 + 33 + 41 + 42 + 43 + 44 + ... + 99*(1+2+3+4+...+99)
= 1^2 + 2^2 + 3^2 + 4^2 + ... + 99^2
Vậy, tổng của dãy số ban đầu là tổng bình phương của các số từ 1 đến 99.
\(\dfrac{3}{4}+\dfrac{1}{4}.x=-\dfrac{1}{2}\)
\(\dfrac{1}{4}.x=-\dfrac{1}{2}-\dfrac{3}{4}\)
\(\dfrac{1}{4}.x=-\dfrac{5}{4}\)
\(x=-\dfrac{5}{4}:\dfrac{1}{4}\)
\(x=-\dfrac{5}{4}.\dfrac{4}{1}\)
\(x=-\dfrac{20}{4}=-5\)
\(\frac{A}{4}=\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{99x100}\)
\(\frac{A}{4}=\frac{2-1}{1x2}+\frac{3-2}{2x3}+\frac{4-3}{3x4}+...+\frac{100-99}{99x100}\)
\(\frac{A}{4}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\frac{A}{4}=1-\frac{1}{100}=\frac{99}{100}=>A=\frac{4x99}{100}=\frac{99}{25}\)
1/2* x+2/3=9/2
1/2 * x = 9/2 - 2/3
1/2 * x= 23/6
x= 23/6 : 1/2
x= 23/6 x 2= 23/3
___
1/2*x-1/3=2/3
1/2*x = 2/3 + 1/3
1/2 * x= 1
x= 1: 1/2
x= 2
____
1/4+3/4:x=3
3/4 : x = 3 - 1/4
3/4 : x= 11/4
x= 11/4 : 3/4
x= 11/3
\(\dfrac{1}{2}\)\(\times\)\(x\) + \(\dfrac{2}{3}\) = \(\dfrac{9}{2}\)
\(\dfrac{1}{2}\)\(\times\)\(x\) = \(\dfrac{9}{2}\) - \(\dfrac{2}{3}\)
\(\dfrac{1}{2}\)\(\times\)\(x\) = \(\dfrac{23}{6}\)
\(x\) = \(\dfrac{23}{6}\):\(\dfrac{1}{2}\)
\(x\) = \(\dfrac{23}{3}\)
\(\dfrac{1}{2}\)\(\times\)\(x\) - \(\dfrac{1}{3}\) = \(\dfrac{2}{3}\)
\(\dfrac{1}{2}\)\(\times\)\(x\) = \(\dfrac{2}{3}\) + \(\dfrac{1}{3}\)
\(\dfrac{1}{2}\times\)\(x\) = 1
\(x\) = 1 : \(\dfrac{1}{2}\)
\(x\) = 2
\(\dfrac{1}{4}\) + \(\dfrac{3}{4}\): \(x\) = 3
\(\dfrac{3}{4}\): \(x\) = 3 - \(\dfrac{1}{4}\)
\(\dfrac{3}{4}\):\(x\) = \(\dfrac{11}{4}\)
\(x\) = \(\dfrac{3}{4}\): \(\dfrac{11}{4}\)
\(x\) = \(\dfrac{3}{11}\)
\(C=5\frac{9}{10}:\frac{3}{2}-\left(2\frac{1}{3}.4\frac{1}{2}-2.2\frac{1}{3}\right):\frac{7}{4}\)
\(=\frac{59}{10}:\frac{3}{2}-\left(\frac{7}{3}.\frac{9}{2}-2.\frac{7}{3}\right):\frac{7}{4}\)
\(=\frac{59}{15}-\left[\frac{7}{3}\left(\frac{9}{2}-2\right)\right]:\frac{7}{4}\)
\(=\frac{59}{15}-\frac{35}{6}:\frac{7}{4}\)
\(=\frac{59}{15}-\frac{10}{3}\)
\(=\frac{9}{15}=\frac{3}{5}\)
\(\cdot62,87+35,14+4,13+8,35+4,86+5,65\)
\(=\left(62,87+4,13\right)+\left(35,14+4,86\right)+\left(8,35+5,65\right)\)
\(=67+40+14\)
\(=121\)
Lời giải:
\(B=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+....+\frac{2021}{4^{2021}}\)
\(4B=1+\frac{2}{4}+\frac{3}{4^2}+...+\frac{2021}{4^{2020}}\)
\(4B-B=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2020}}-\frac{2021}{4^{2021}}\)
\(3B=1+\frac{1}{4}+\frac{1}{4^2}+....+\frac{1}{4^{2020}}-\frac{2021}{4^{2021}}\)
\(12B=4+1+\frac{1}{4}+...+\frac{1}{4^{2019}}-\frac{2021}{4^{2020}}\)
\(9B=4-\frac{6067}{4^{2021}}<4\Rightarrow B< \frac{4}{9}< \frac{1}{2}\)
\(4\cdot A=4+4^2+...+4^{2023}\)
\(\Leftrightarrow3\cdot A=4^{2022}-1\)
hay \(A=\dfrac{4^{2022}-1}{3}\)
1 + 41 + 42 + .... + 42022
Đặt :
A = 1 + 41 + 42 + .... + 42022
4A = 4 + 42 + 43 + ..... + 42023
4A - A = ( 4 + 42 + 43 + ..... + 42023 ) - ( 1 + 41 + 42 + .... + 42022 )
3A = 42023 - 1
A = \(\dfrac{4^{2023}-1}{3}\)