giar sử ( x^2 + y^2 ) chia hết cho 3 . CMR x chia hét cho 3 , y chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nếu x chia 3 dư 1 hoặc dư 2 ,y chia 3 dư 1 hoặc dư => \(x^2\)chia 3 dư 1, y2 chia 3 dư 1=> x2+y2 chia 3 dư 2=> không thỏa mãn
nếu x chia hết cho 3, y chia hết cho 3=> x2chia hết cho 3, y2chia hết cho 3=>x2+y2 chia hết cho 3
=> x2+y2 chia hết cho 3 <=> x chia hết cho 3, y chia hết cho 3=> đpcm
xét x2 chia hết cho 3
=>x chia hết cho 3
=>y3 chia hết cho 3
=>y chia hết cho 3
=>x;y chia hết cho 3
xét x2 không chia hết cho 3
=>x2 chia 3 dư 1(tính chất của 1 số chính phương)
=>y2 chia 3 dư 2(vô lí)
=>x;y chia hết cho 3
=>đpcm
xét x;y không chia hết cho 3
=>x2;y2 không chia hết cho 3
=>x2;y2 chia 3 dư 1
=>x2+y2 chia 3 dư 2(trái giả thuyết)
=>sẽ có 1 số x hoặc y chia hết cho 3
vì tính chất của x;y như nhau nên ta giả sử x chia hết cho 3
=>x2 chia hết cho 3
=>y2 chia hết cho 3
=>y chia hết cho 3
=>x;y chia hết cho 3
=>đpcm
xét x;y không chia hết cho 3
=>x2;y2 không chia hết cho 3
=>x2;y2 chia 3 dư 1
=>x2+y2 chia 3 dư 2(trái giả thuyết)
=>sẽ có 1 số x hoặc y chia hết cho 3
vì tính chất của x;y như nhau nên ta giả sử x chia hết cho 3
=>x2 chia hết cho 3
=>y2 chia hết cho 3
=>y chia hết cho 3
=>x;y chia hết cho 3
=>đpcm
a/
\(x+6y⋮17\Rightarrow5\left(x+6y\right)=5x+30y⋮17\)
\(5x+47y=\left(5x+30y\right)+17y\)
\(5x+30y⋮17\left(cmt\right);17y⋮17\Rightarrow5x+47y⋮17\)
b/
\(3x+16y⋮5\Rightarrow2\left(3x+16y\right)=6x+32y=\left(5x+30y\right)+\left(x+2y\right)⋮5\)
Mà \(5x+30y⋮5\Rightarrow x+2y⋮5\)
Dễ mak bạn
1 số chính phương chia 3 dư 0 hoặc 1
X^2 phải chia hết cho 3 y^2 cx chia hết cho 3
Nên x,y chia hết cho 3
Bài này dễ anh giải đc
Làm ny anh nha?
Ta có:
số chính phương chia 3 dư 1 hoặc dư 0
mà: x2+y2 chia hết cho 3
nên x2 và y2 đồng thời chia hết cho 3
Mặt khác; 3 là số nguyên tố nên
x chia hết cho 3 và y chia hết cho 3
Vậy x chia hết cho 3, y chia hết cho 3 với x2+y2 chia hết cho 3