Cho hình thang ABCD(AB//CD),AB=4cm,CD=10cm,AD=3 cm.Gọi O là giao điểm của các đường thẳng AD,BC.Tính độ dài OA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔODC có AB//DC
nên \(\dfrac{OA}{OD}=\dfrac{AB}{DC}\)
=>\(\dfrac{OA}{OA+AD}=\dfrac{4}{10}=\dfrac{2}{5}\)
=>\(\dfrac{OA}{OA+3}=\dfrac{2}{5}\)
=>5OA=2(OA+3)
=>5OA=2OA+6
=>3OA=6
=>OA=2(cm)
Xét ΔOAB và ΔOCD có
góc OAB=góc OCD
góc AOB=góc COD
=>ΔOAB đồng dạng với ΔOCD
=>OA/OC=OB/OD=AB/CD=3/5
=>BO/BD=3/8; AO/AC=3/8
Xét ΔBDC có ON//DC
nên ON/DC=BO/BD
=>ON/10=3/8
=>ON=3,75cm
Xét ΔADC có OM//DC
nên OM/DC=AO/AC=3/8
=>OM=3,75cm
=>MN=7,5cm
c. -Xét △ADC có: OM//DC (gt).
\(\Rightarrow\dfrac{MO}{DC}=\dfrac{AO}{AC}\) (định lí Ta-let).
\(\Rightarrow\dfrac{DC}{MO}=\dfrac{AC}{AO}\)
\(\Rightarrow\dfrac{DC}{OM}-1=\dfrac{OC}{AO}\) (1).
-Xét △BDC có: ON//DC (gt).
\(\Rightarrow\dfrac{ON}{DC}=\dfrac{BO}{BD}\) (định lí Ta-let).
\(\Rightarrow\dfrac{DC}{ON}=\dfrac{BD}{BO}\)
\(\Rightarrow\dfrac{DC}{ON}-1=\dfrac{OD}{BO}\)
-Xét △ABO có: AB//DC (gt).
\(\Rightarrow\dfrac{OD}{BO}=\dfrac{OC}{OA}=\dfrac{DC}{AB}\) (3)
-Từ (1), (2),(3) suy ra:
\(\dfrac{DC}{OM}-1=\dfrac{DC}{ON}-1=\dfrac{DC}{AB}\)
\(\Rightarrow\dfrac{DC}{OM}=\dfrac{DC}{ON}=\dfrac{DC}{AB}+1=\dfrac{AB+DC}{AB}\)
\(\Rightarrow\dfrac{1}{OM}=\dfrac{1}{ON}=\dfrac{AB+DC}{AB.DC}=\dfrac{1}{AB}+\dfrac{1}{CD}\)
a: Xét ΔAOB và ΔCOD có
\(\widehat{OAB}=\widehat{OCD}\)
\(\widehat{AOB}=\widehat{COD}\)
Do đó: ΔAOB∼ΔCOD
Suy ra: \(\dfrac{OA}{OC}=\dfrac{OB}{OD}=\dfrac{AB}{CD}\)
hay \(OA\cdot OD=OB\cdot OC\)
b: \(\dfrac{OA}{OC}=\dfrac{AB}{CD}\)
\(\Leftrightarrow OA=\dfrac{1}{2}\cdot6=3\left(cm\right)\)
Xét ΔODC có AB//DC
nên AB/DC=OA/OC
=>\(\dfrac{OA}{OA+3}=\dfrac{2}{5}\)
=>5OA=2OA+6
=>OA=2cm