Xác định m để phương trình sau đây có nghiệm nguyên dương bé hơn 3:\(2x^2+\left(m-3\right)x=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn ơi giải hộ mk câu này vs
tìm n số tự nhiên để
3n-4 chia hết cho n-1
a/ theo định lí Vi-ét ta có : x1+x2 = -1-2m hay -3-2 = -1-2m <=>m=2
và x1x2 = c/a = -n+3 hay (-3).(-2) = -n+3 <=> n= -3
Mình mới làm kịp câu thôi vì mình bận lắm nên bữa khác giải quyết nha
Đặt \(cosx=t\in\left[-1;1\right]\)
\(\Rightarrow6t^2+\left(9m-7\right)t-6m+2=0\)
\(\Leftrightarrow6t^2-7t+2+9mt-6m=0\)
\(\Leftrightarrow\left(2t-1\right)\left(3t-2\right)+3m\left(3t-2\right)=0\)
\(\Leftrightarrow\left(3t-2\right)\left(2t+3m-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}cosx=\dfrac{2}{3}\\cosx=\dfrac{-3m+1}{2}\end{matrix}\right.\)
(Chà tới đây mới thấy ko cần đặt ẩn phụ, nhìn con số 9m và 6m to 1 cách vô lý đã nghi nghi có gì đó bất thường trong nghiệm :D)
Pt \(cosx=\dfrac{2}{3}\) cho 1 nghiệm thuộc \(\left(0;\dfrac{\pi}{2}\right)\)
Để pt có 3 nghiệm pb thì \(cosx=\dfrac{-3m+1}{2}\) cho 2 nghiệm pb thuộc khoảng đã cho
Từ đường tròn lượng giác ta dễ dàng suy ra: \(-1< \dfrac{-2m+1}{2}< 0\)
x2-2(m-1)x+m2-3m=0
△'=[-(m-1)]2-1(m2-3m)=(m-1)2-(m2-3m)=m2-2m+1-m2+3m= m+1
áp dụng hệ thức Vi-ét ta được
x1+x2=2(m-1) (1)
x1*x2=m2-3m (2)
a) để PT có 2 nghiệm phân biệt khi m+1>0 <=> m>-1
b) để PT có duy nhất một nghiệm âm thì x1*x2 <0
e) Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1x_2=m^2-3m\end{matrix}\right.\)
Ta có: \(x_1^2+x_2^2=8\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=8\)
\(\Leftrightarrow\left(2m-2\right)^2-2\cdot\left(m^2-3m\right)-8=0\)
\(\Leftrightarrow4m^2-8m+4-2m^2+6m-8=0\)
\(\Leftrightarrow2m^2-2m-4=0\)(1)
\(\Delta=\left(-2\right)^2-4\cdot2\cdot\left(-4\right)=4+32=36\)
Vì \(\Delta>0\) nên phương trình (1) có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=\dfrac{2-\sqrt{36}}{4}=\dfrac{2-6}{4}=-1\\m_2=\dfrac{2+\sqrt{36}}{4}=\dfrac{2+6}{4}=2\end{matrix}\right.\)
Vậy: Để phương trình có hai nghiệm phân biệt thỏa mãn \(x_1^2+x_2^2=8\) thì \(m\in\left\{-1;2\right\}\)
\(2x^2+\left(m-3\right)x=0\)
\(\Leftrightarrow x\left[2x+\left(m-3\right)\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3-m}{2}\end{cases}}\)
Phương trình có nghiệm nguyên dương bé hơn 3 khi \(\frac{3-m}{2}=t\) với t = 1 , 2
\(t=1\Leftrightarrow m=1\)
\(t=2\Leftrightarrow m=-1\)
Vậy phương trình có nghiệm x = 1 <=> m = 1 ; x = 2 <=> m = -1