cho tam giác ABC vuông tại A.Tia phân giác của góc B cắt AC tại D. Lấy E thuộc đoạn thẳng BC sao cho BE = BA:
a) CM: tam giác BAD = tam giác BED
b) Tia ED cắt tia BA tại F . CM FD = DC
c) Gọi H là trung điểm của FC. CM : B,D,H thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBEA và ΔBED có
BA=BD
\(\widehat{ABE}=\widehat{DBE}\)
BE chung
Do đó: ΔBEA=ΔBED
Sửa đề: Lấy E thuộc BC sao cho BE=BA
a: Chứng minh ΔBAD=ΔBED
Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
b: ta có: ΔBAD=ΔBED
=>\(\widehat{BAD}=\widehat{BED}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BED}=90^0\)
=>DE\(\perp\)BC
=>ΔDEC vuông tại E
c: Sửa đề: Tia BA cắt ED tại F
Ta có: ΔBAD=ΔBED
=>DA=DE
Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔDAF=ΔDEC
=>AF=EC
a , BD là phân giác của \(\widehat{ABC}\)
\(\Rightarrow\) \(\widehat{ABC}=\frac{1}{2}.\widehat{ABC}=\frac{1}{2}.40^o=20^o\)
b , BD là phân giác của \(\widehat{ABC}\) \(\Rightarrow\) \(\widehat{ABD}=\widehat{EBD}\)
Xét ΔABD và ΔEBD có :
BD chung ; \(\widehat{ABD}\) \(=\) \(\widehat{EBD}\); AB = EB ( gt )
\(\Rightarrow\) ΔABD = ΔEBD ( c.g.c )
\(\Rightarrow\) \(\widehat{BAD}\) \(=\) \(BED\) ( đpcm )
\(\Rightarrow\) \(\widehat{BED}=90^o\) \(\Rightarrow\) \(DE\) ⊥ \(BC\) ( đpcm )
c , Xét 2 tam giác vuông : ΔABC và ΔEBF có :
\(\widehat{B}\) chung ; AB = BE ( gt )
\(\Rightarrow\) ΔABC = ΔEBF ( cgv - gn ) ( đpcm )
d , Xét ΔBCF có FE , CA là đường cao , FE ∩ CA tại D
\(\Rightarrow\) D là trực tâm ⇒ BD ⊥ CF
Mà BD ⊥ CK ( gt )
\(\Rightarrow\) C, K, F thẳng hàng ( đpcm )
a) ta có: A + ABC + C =180° (đ/l)
=> 90° + ABC + 40° =180°
=> ABC = 180° -( 40°+ 90°)
=> ABC = 50°
Vì BD là tia phân giác góc ABC => ABD = CBD = 50° : 2 = 25°
Vậy ABD = 25°
b) xét tam giác BAD và tam giác BED có:
AB = BE ( GT )
BD chung
ABD = CBD ( GT )
=> tam giác BAD = tam giác BED ( c.g.c )
Ta có A = BED = 90° ( 2 góc t.ư)
=> DE vuông góc BC ( vì có 1 góc= 90° )
c) xét tam giác ABC và tam giác EBF có:
AB = BE ( GT )
B chung
A = E = 90°
=> tam giác ABC = tam giác EBF ( g.c.g )
d) ta có tam giác ABC = tam giác EBF ( theo c )
=> BC = BF ( 2 cạnh tương ứng)
Xét tam giác BKC và tam giác BKF có:
BC = BF ( GT )
BK chung
FBK = KBC ( GT )
=> tam giác BKC = tam giác BKF (c.g.c)
=> BKC = BKF ( 2 góc t.ư)
=> BKC + BKF = 180° ( 2 góc kề bù )
=> BKC = BKF = 180° : 2 = 90° = KFC
Vậy 3 điểm K,F,C thẳng hàng
Bn vẽ hình hộ mk nhé!
a) Áp dụng tc tổng 3 góc của 1 tg ta có:
góc BAC + ACB + ABC = 180 độ
=>90 + 40 + ABC = 180
=> ABC = 50 độ
mà góc ABD = CBD = ABC : 2 = 50 : 2 = 25 độ ( BD là tia pg của ABC )
TaeHyung toàn gửi những bài khó không nhỉ! ^.^
a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
=>DA=DE
=>D nằm trên đường trung trực của AE(1)
Ta có: BA=BE
=>B nằm trên đường trung trực của AE(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
b: Sửa đề: AF=EC
Ta có: ΔBAD=ΔBED
=>\(\widehat{BAD}=\widehat{BED}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BED}=90^0\)
=>DE\(\perp\)BC
Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
Do đó;ΔDAF=ΔDEC
=>AF=EC
c: Sửa đề: CM AE//CF
Xét ΔBFC có \(\dfrac{BA}{AF}=\dfrac{BE}{EC}\)
nên AE//CF
d: Sửa đề: I là trung điểm của FC
Ta có: IF=IC
=>I nằm trên đường trung trực của CF(3)
Ta có: DF=DC(ΔDAF=ΔDEC)
=>D nằm trên đường trung trực của CF(4)
ta có: BA+AF=BF
BE+EC=BC
mà BA=BE
và AF=EC
nên BF=BC
=>B nằm trên đường trung trực của CF(5)
Từ (3),(4),(5) suy ra B,D,I thẳng hàng
a) tam giác BAD và tam giác BED có :
BA=BE (gt)
góc ABD=góc EBD9do BD là tia phân giác)
BD:cạnh chung
=>Tam giác BAD=tam giác BED