K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2018

Ta có \(x^3+30x^2+291x+990=0\)
\(\Leftrightarrow\left(x^3+15x^2\right)+\left(15x^2+225x\right)+\left(66x+990\right)=0\)
\(\Leftrightarrow\left(x+15\right)\left(x^2+15x+66\right)=0\)
\(x^2+15x+66=x^2+2.x.\dfrac{15}{2}+\dfrac{225}{4}+\dfrac{39}{4}=\left(x+\dfrac{15}{2}\right)^2+\dfrac{39}{4}\ge\dfrac{39}{4}>0\)
=>x+15=0
\(\Leftrightarrow x=-15\)

24 tháng 2 2021

`a,(x+3)(x^2+2021)=0`

`x^2+2021>=2021>0`

`=>x+3=0`

`=>x=-3`

`2,x(x-3)+3(x-3)=0`

`=>(x-3)(x+3)=0`

`=>x=+-3`

`b,x^2-9+(x+3)(3-2x)=0`

`=>(x-3)(x+3)+(x+3)(3-2x)=0`

`=>(x+3)(-x)=0`

`=>` $\left[ \begin{array}{l}x=0\\x=-3\end{array} \right.$

`d,3x^2+3x=0`

`=>3x(x+1)=0`

`=>` $\left[ \begin{array}{l}x=0\\x=-1\end{array} \right.$

`e,x^2-4x+4=4`

`=>x^2-4x=0`

`=>x(x-4)=0`

`=>` $\left[ \begin{array}{l}x=0\\x=4\end{array} \right.$

1) a) \(\left(x+3\right).\left(x^2+2021\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2021=0\end{matrix}\right.\\\left[{}\begin{matrix}x=-3\left(nhận\right)\\x^2=-2021\left(loại\right)\end{matrix}\right. \)

=> S={-3}

 

21 tháng 2 2019

\(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\)

<=>\(\left(x^2-4\right)\left(x^2-10\right)=72\) (1)

Đặt \(x^2-7=t\)

=> pt (1) <=> \(\left(t+3\right)\left(t-3\right)=72\)

<=> \(t^2-9=72\)

<=> \(t^2-81=0\)

<=> \(\left(t-9\right)\left(t+9\right)=0\)

Tự làm nốt

21 tháng 2 2019

\(8x^2-\left(4x+3\right)^3+\left(2x+3\right)^3=0\)

\(\Leftrightarrow8x^2+\left(2x+3-4x-3\right)\left[\left(4x+3\right)^2+\left(2x+3\right)\left(4x+3\right)+\left(2x+3\right)^2\right]=0\)

\(\Leftrightarrow8x^2-2x\left(16x^2+24x+9+8x^2+18x+9+4x^2+12x+9\right)=0\)

\(\Leftrightarrow2x\left(4x-28x^2-54x-27\right)=0\)

\(\Leftrightarrow2x\left(28x^2+50x+27\right)=0\)

Tự làm nốt

Sửa đề: 8x-1

=>2(8x^2-x)(8x^2-x+2)-126=0

=>2[(8x^2-x)^2+2(8x^2-x)]-126=0

=>(8x^2-x)^2+2(8x^2-x)-63=0

=>(8x^2-x+9)(8x^2-x-7)=0

=>8x^2-x-7=0

=>x=1 hoặc x=-7/8

a: \(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=\dfrac{3}{2}\end{matrix}\right.\)

b: \(\Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\\x=4\end{matrix}\right.\)

c: \(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\5x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{4}{5}\end{matrix}\right.\)

d: \(\Leftrightarrow\left(x+3\right)\left(x-4\right)=0\)

=>x+3=0 hoặc x-4=0

=>x=-3 hoặc x=4

e: \(\Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\\x=4\end{matrix}\right.\)

f: \(\Leftrightarrow\left(2x+3\right)\left(x-4\right)\left(x+4\right)=0\)

hay \(x\in\left\{-\dfrac{3}{2};4;-4\right\}\)

8 tháng 2 2022

a, \(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=\dfrac{3}{2}\end{matrix}\right.\)

b, \(\Leftrightarrow\left[{}\begin{matrix}x^2-9=0\\4-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\pm3\\x=4\end{matrix}\right.\)

c, \(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\4-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{4}{5}\end{matrix}\right.\)

d, \(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)

e, tương tự d 

f, \(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\x^2-16=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\pm4\end{matrix}\right.\)

16 tháng 12 2021

Bài 1: 

b: \(\Leftrightarrow x-2=0\)

hay x=2

16 tháng 12 2021

anh ơi, vậy là sai đề hả anh, chứ đề kêu chứng minh phương trình vô nghiệm mà em thấy anh ghi x=2

10 tháng 1 2020

giúp em với mọi người ơi:<<<<<

18 tháng 5 2017

(x2-4x+11)(x4-8x2+21)=35

((2-4)x+11)(x(4-8-2)+21)=35

(-2x+11)(x(-6)+21)=35

(-2x.x(-6))+(11.21)=35

-8x+231=35

-8x=35-231

-8x=-196

x=-196:(-8)

x=24.5

đúng ko pn

18 tháng 5 2017

pn ấy đúng gồi đó

16 tháng 6 2023

\(\left(x^2+8x\right)+8\left(x^2+8x\right)=48\)

Đặt: \(u=x^2+8x\)

\(\Rightarrow u^2+8u=48\)

\(\Leftrightarrow u^2+8u-48=0\)

\(\Leftrightarrow u^2-4u+12u-48=0\)

\(\Leftrightarrow u\left(u-4\right)+12\left(u-4\right)=0\)

\(\Leftrightarrow\left(u+12\right)\left(u-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}u+12=0\Leftrightarrow u=-12\\u-4=0\Leftrightarrow u=4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2+8x=-12\\x^2+8x=4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+8x+12=0\\x^2+8x-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-4+2\sqrt{5}\\x=-4-2\sqrt{5}\\x=-2\\x=-6\end{matrix}\right.\)

16 tháng 6 2023

\(\Leftrightarrow x^4+16x^3+64x^2+8x^2+64x=48\\ \Leftrightarrow x^4+16x^3+72x^2+64x-48=0\\ \Leftrightarrow\left(x+2\right)\left(x+6\right)\left(x^2+8x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+2=0\\x+6=0\\x^2+8x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-6\\x=-4\pm2\sqrt{5}\end{matrix}\right.\)

Vậy...

12 tháng 11 2023

a:

ĐKXĐ: \(x\notin\left\{\dfrac{3}{2};1\right\}\)

 \(y=\dfrac{\left(x-2\right)^2}{\left(2x-3\right)\left(x-1\right)}=\dfrac{x^2-4x+4}{2x^2-2x-3x+3}\)

=>\(y=\dfrac{x^2-4x+4}{2x^2-5x+3}\)

=>\(y'=\dfrac{\left(x^2-4x+4\right)'\left(2x^2-5x+3\right)-\left(x^2-4x+4\right)\left(2x^2-5x+3\right)'}{\left(2x^2-5x+3\right)^2}\)

=>\(y'=\dfrac{\left(2x-4\right)\left(2x^2-5x+3\right)-\left(2x-5\right)\left(x^2-4x+4\right)}{\left(2x^2-5x+3\right)^2}\)

=>\(y'=\dfrac{4x^3-10x^2+6x-8x^2+20x-12-2x^3+8x^2-8x+5x^2-20x+20}{\left(2x^2-5x+3\right)^2}\)

=>\(y'=\dfrac{2x^3-5x^2-2x+8}{\left(2x^2-5x+3\right)^2}\)

b:

ĐKXĐ: x<>-3

 \(y=\left(x+3\right)+\dfrac{4}{x+3}\)

=>\(y'=\left(x+3+\dfrac{4}{x+3}\right)'=1+\left(\dfrac{4}{x+3}\right)'\)

\(=1+\dfrac{4'\left(x+3\right)-4\left(x+3\right)'}{\left(x+3\right)^2}\)

=>\(y'=1+\dfrac{-4}{\left(x+3\right)^2}=\dfrac{\left(x+3\right)^2-4}{\left(x+3\right)^2}\)

y'=0

=>\(\left(x+3\right)^2-4=0\)

=>\(\left(x+3+2\right)\left(x+3-2\right)=0\)

=>(x+5)(x+1)=0

=>x=-5 hoặc x=-1

c:

ĐKXĐ: x<>-2

 \(y=\dfrac{\left(5x-1\right)\left(x+1\right)}{x+2}\)

=>\(y=\dfrac{5x^2+5x-x-1}{x+2}=\dfrac{5x^2+4x-1}{x+2}\)

=>\(y'=\dfrac{\left(5x^2+4x-1\right)'\left(x+2\right)-\left(5x^2+4x-1\right)\left(x+2\right)'}{\left(x+2\right)^2}\)

=>\(y'=\dfrac{\left(5x+4\right)\left(x+2\right)-\left(5x^2+4x-1\right)}{\left(x+2\right)^2}\)

=>\(y'=\dfrac{5x^2+10x+4x+8-5x^2-4x+1}{\left(x+2\right)^2}\)

=>\(y'=\dfrac{10x+9}{\left(x+2\right)^2}\)

\(y'\left(-1\right)=\dfrac{10\cdot\left(-1\right)+9}{\left(-1+2\right)^2}=\dfrac{-1}{1}=-1\)

d: 

ĐKXĐ: x<>2

\(y=x-2+\dfrac{9}{x-2}\)

=>\(y'=\left(x-2+\dfrac{9}{x-2}\right)'=1+\left(\dfrac{9}{x-2}\right)'\)

\(=1+\dfrac{9'\left(x-2\right)-9\left(x-2\right)'}{\left(x-2\right)^2}\)

=>\(y'=1+\dfrac{-9}{\left(x-2\right)^2}=\dfrac{\left(x-2\right)^2-9}{\left(x-2\right)^2}\)

y'=0

=>\(\dfrac{\left(x-2\right)^2-9}{\left(x-2\right)^2}=0\)

=>\(\left(x-2\right)^2-9=0\)

=>(x-2-3)(x-2+3)=0

=>(x-5)(x+1)=0

=>x=5 hoặc x=-1