Tính
\(M=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+.......+\dfrac{1}{2015\sqrt{2014}+2014\sqrt{2015}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
\(\dfrac{1}{\left(k+1\right)\sqrt{k}+k\left(\sqrt{k+1}\right)}\) \(=\dfrac{\left(k+1\right)\sqrt{k}-k\left(\sqrt{k+1}\right)}{\left(k+1\right)^2k-k^2\left(k+1\right)}\)
\(=\dfrac{\left(k+1\right)\sqrt{k}-k\left(\sqrt{k+1}\right)}{\left(k+1\right)k\left(k+1-k\right)}=\dfrac{1}{\sqrt{k}}-\dfrac{1}{\sqrt{k+1}}\)
Áp dụng vào biểu thức ta có:
\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}\) \(+...+\dfrac{1}{2015\sqrt{2014}+2014\sqrt{2015}}\)
\(=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{2014}}-\dfrac{1}{\sqrt{2015}}\)
\(=1-\dfrac{1}{\sqrt{2015}}\)
c: Ta có: \(\sqrt{\left(4+\sqrt{10}\right)^2}-\sqrt{\left(4-\sqrt{10}\right)^2}\)
\(=4+\sqrt{10}-4+\sqrt{10}\)
\(=2\sqrt{10}\)
d: Ta có: \(\sqrt{3-2\sqrt{2}}+\sqrt{6-4\sqrt{2}}+\sqrt{9-4\sqrt{2}}\)
\(=\sqrt{2}-1+2-\sqrt{2}+2\sqrt{2}-1\)
\(=2\sqrt{2}\)
a) \(=\left(2\sqrt{3}\right)^2-\left(3\sqrt{2}\right)^2=12-18=-6\)
b) \(=\dfrac{\sqrt{2013}+\sqrt{2014}}{2013-2014}-\dfrac{\sqrt{2014}+\sqrt{2015}}{2014-2015}=-\sqrt{2013}-\sqrt{2014}+\sqrt{2014}-\sqrt{2015}=-\sqrt{2013}-\sqrt{2015}\)
c) \(=4+\sqrt{10}-4+\sqrt{10}=2\sqrt{10}\)
d) \(=\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}-1\right)^2}=\sqrt{2}-1+2-\sqrt{2}+2\sqrt{2}-1=2\sqrt{2}\)
b,\(B=\sqrt{1+2014^2+\dfrac{2014^2}{2015^2}}+\dfrac{2014}{2015}\)
Ta có :\(\left(2014+1\right)^2=2014^2+1+2.2014\)
\(\Rightarrow2014^2+1=2015^2-2.2014\)
\(\Rightarrow B=\sqrt{2015^2-2.2014+\left(\dfrac{2014}{2015}\right)^2}+\dfrac{2014}{2015}\)
\(=\sqrt{\left(2015-\dfrac{2014}{2015}\right)^2}+\dfrac{2014}{2015}\)
\(=2015-\dfrac{2014}{2015}+\dfrac{2014}{2015}\)
\(=2015\)
Vậy B=2015
a) Ta có: \(\dfrac{2014}{\sqrt{2015}}+\dfrac{2015}{\sqrt{2014}}=\)
\(\dfrac{2015-1}{\sqrt{2015}}+\dfrac{2014+1}{\sqrt{2014}}=\sqrt{2015}-\dfrac{1}{\sqrt{2015}}+\sqrt{2014}+\dfrac{1}{\sqrt{2014}}\)
\(\left(\dfrac{1}{\sqrt{2014}}-\dfrac{1}{\sqrt{2015}}>0\right)\)\(>\sqrt{2014}+\sqrt{2015}\)
Vậy \(\dfrac{2014}{\sqrt{2015}}+\dfrac{2015}{\sqrt{2014}}>\sqrt{2014}+\sqrt{2015}\)
\(\Sigma\left(\dfrac{1}{\sqrt{x}+\sqrt{x+1}}\right)\) cho x chạy từ 2-2014
kq 43.47453781
Chứng minh \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\) rồi áp dụng với n = 1,2,....,2014
Ta thấy: \(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)
\(\Rightarrow\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{2016\sqrt{2015}+2015\sqrt{2016}}\)
\(=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+.....+\dfrac{1}{\sqrt{2015}}-\dfrac{1}{\sqrt{2016}}\)
\(=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2016}}=\dfrac{\sqrt{2016}-1}{\sqrt{2016}}\)