K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: A>-4

\(A=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{x-1+1-\sqrt{x}}{x+\sqrt{x}}\)

\(=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)

\(A+4=\dfrac{x-2\sqrt{x}+1+4\sqrt{x}}{\sqrt{x}}=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}>0\)

=>A>-4

23 tháng 7 2019

a) \(\sqrt{a}+1>\sqrt{a+1}\)\(\Leftrightarrow\)\(a+2\sqrt{a}+1>a+1\)\(\Leftrightarrow\)\(2\sqrt{a}>0\)( luôn đúng \(\forall x>0\) ) 

b) \(a-1< a\)\(\Leftrightarrow\)\(\sqrt{a-1}< \sqrt{a}\)

c) \(\left(\sqrt{6}-1\right)^2=6-2\sqrt{6}+1>3-2\sqrt{3.2}+2=\left(\sqrt{3}-\sqrt{2}\right)^2\)

do \(\sqrt{6}-1>0;\sqrt{3}-\sqrt{2}>0\) nên \(\sqrt{6}-1>\sqrt{3}-\sqrt{2}\) ( đpcm ) 

4 tháng 9 2016

Sai đề

7 tháng 12 2017

\(=\dfrac{x-1}{\sqrt{x}}:\left(\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+\left(1-\sqrt{x}\right)}{\sqrt{x}+x}\right)\)

\(=\dfrac{x-1}{\sqrt{x}}:\left(\dfrac{\left(\sqrt{x}-1\right)\sqrt{x}}{\left(\sqrt{x}+1\right)\sqrt{x}}\right)\)

\(=\dfrac{x-1}{\sqrt{x}}.\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}\)

\(=\dfrac{\left(1+\sqrt{x}\right)^2}{\sqrt{x}}\)

ma \(\left(1+\sqrt{x}\right)^2>4\) voi moi x

\(\Rightarrow A>4\)

11 tháng 5 2017

Bài 2: 

\(a^4+b^4\ge a^3b+b^3a\)

\(\Leftrightarrow a^4-a^3b+b^4-b^3a\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

ta thấy : \(\orbr{\orbr{\begin{cases}\left(a-b\right)^2\ge0\\\left(a^2+ab+b^2\right)\ge0\end{cases}}}\Leftrightarrow dpcm\)

Dấu " = " xảy ra khi a = b

tk nka !!!! mk cố giải mấy bài nữa !11

27 tháng 3 2019

1/Thêm 6 vào 2 vế,ta cần c/m:

\(\left(x^4+1+1+1\right)+\left(y^4+1+1+1\right)\ge8\)

Thật vậy,áp dụng BĐT AM-GM cho cái biểu thức trong ngoặc,ta được:

\(VT\ge4\left(x+y\right)=4.2=8\) (đpcm)

Dấu "=" xảy ra khi x = y = 1 (loại x = y = -1 vì không thỏa mãn x + y = 2)

22 tháng 6 2017

đk : \(x\ge0;y\ge0;x\ne y\)

A = \(\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\dfrac{\sqrt{y}}{\sqrt{y}-\sqrt{x}}=\dfrac{2\sqrt{xy}}{x-y}\)

\(\Leftrightarrow\) \(\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}-\dfrac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\dfrac{2\sqrt{xy}}{x-y}\)

\(\Leftrightarrow\) \(\dfrac{\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)-\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}=\dfrac{2\sqrt{xy}}{x-y}\)

\(\Leftrightarrow\) \(\dfrac{x-\sqrt{xy}-\sqrt{xy}-y}{x-y}=\dfrac{2\sqrt{xy}}{x-y}\)

\(\Rightarrow\) \(x-2\sqrt{xy}-y=2\sqrt{xy}\) \(\Leftrightarrow\) \(x-y=4\sqrt{xy}\)

\(\Leftrightarrow\) A = \(\dfrac{2\sqrt{xy}}{4\sqrt{xy}}=\dfrac{1}{2}\)

không biết sai chỗ nào ??? sao bài làm lại trái với câu hỏi thế này ???

4 tháng 6 2017

a) Bạn dư sức làm.

b) \(A=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+1-\dfrac{2x+\sqrt{x}}{\sqrt{x}}\)

\(=\dfrac{\sqrt{x}\cdot\left(x\sqrt{x}+1\right)}{x-\sqrt{x}+1}+1-\dfrac{2x+\sqrt{x}}{\sqrt{x}}\)

\(=\dfrac{\sqrt{x}\cdot\left(\sqrt{x}+1\right)\cdot\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+1-\dfrac{2x+\sqrt{x}}{\sqrt{x}}\)

\(=\sqrt{x}\cdot\left(\sqrt{x}+1\right)+1-\dfrac{2x+\sqrt{x}}{\sqrt{x}}\)

\(=x+\sqrt{x}+1-\dfrac{2x+\sqrt{x}}{\sqrt{x}}\)

\(=\dfrac{x\sqrt{x}+x+\sqrt{x}-\left(2x+\sqrt{x}\right)}{\sqrt{x}}\)

\(=\dfrac{x\sqrt{x}+x+\sqrt{x}-2x-\sqrt{x}}{\sqrt{x}}\)

\(=\dfrac{x\sqrt{x}-x}{\sqrt{x}}\)

\(=\dfrac{\left(x\sqrt{x}-x\right)\sqrt{x}}{x}\)

\(=\dfrac{x\cdot\left(\sqrt{x}-1\right)\sqrt{x}}{x}\)

\(=\left(\sqrt{x}-1\right)\sqrt{x}\)

\(=x-\sqrt{x}\)

27 tháng 11 2018

còn câu c làm sao bạn ?