cho A = x + 4
chứng minh : \(\sqrt{A}\)>\(A\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: A>-4
\(A=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{x-1+1-\sqrt{x}}{x+\sqrt{x}}\)
\(=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)
\(A+4=\dfrac{x-2\sqrt{x}+1+4\sqrt{x}}{\sqrt{x}}=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}>0\)
=>A>-4
a) \(\sqrt{a}+1>\sqrt{a+1}\)\(\Leftrightarrow\)\(a+2\sqrt{a}+1>a+1\)\(\Leftrightarrow\)\(2\sqrt{a}>0\)( luôn đúng \(\forall x>0\) )
b) \(a-1< a\)\(\Leftrightarrow\)\(\sqrt{a-1}< \sqrt{a}\)
c) \(\left(\sqrt{6}-1\right)^2=6-2\sqrt{6}+1>3-2\sqrt{3.2}+2=\left(\sqrt{3}-\sqrt{2}\right)^2\)
do \(\sqrt{6}-1>0;\sqrt{3}-\sqrt{2}>0\) nên \(\sqrt{6}-1>\sqrt{3}-\sqrt{2}\) ( đpcm )
\(=\dfrac{x-1}{\sqrt{x}}:\left(\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+\left(1-\sqrt{x}\right)}{\sqrt{x}+x}\right)\)
\(=\dfrac{x-1}{\sqrt{x}}:\left(\dfrac{\left(\sqrt{x}-1\right)\sqrt{x}}{\left(\sqrt{x}+1\right)\sqrt{x}}\right)\)
\(=\dfrac{x-1}{\sqrt{x}}.\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}\)
\(=\dfrac{\left(1+\sqrt{x}\right)^2}{\sqrt{x}}\)
ma \(\left(1+\sqrt{x}\right)^2>4\) voi moi x
\(\Rightarrow A>4\)
Bài 2:
\(a^4+b^4\ge a^3b+b^3a\)
\(\Leftrightarrow a^4-a^3b+b^4-b^3a\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
ta thấy : \(\orbr{\orbr{\begin{cases}\left(a-b\right)^2\ge0\\\left(a^2+ab+b^2\right)\ge0\end{cases}}}\Leftrightarrow dpcm\)
Dấu " = " xảy ra khi a = b
tk nka !!!! mk cố giải mấy bài nữa !11
đk : \(x\ge0;y\ge0;x\ne y\)
A = \(\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\dfrac{\sqrt{y}}{\sqrt{y}-\sqrt{x}}=\dfrac{2\sqrt{xy}}{x-y}\)
\(\Leftrightarrow\) \(\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}-\dfrac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\dfrac{2\sqrt{xy}}{x-y}\)
\(\Leftrightarrow\) \(\dfrac{\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)-\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}=\dfrac{2\sqrt{xy}}{x-y}\)
\(\Leftrightarrow\) \(\dfrac{x-\sqrt{xy}-\sqrt{xy}-y}{x-y}=\dfrac{2\sqrt{xy}}{x-y}\)
\(\Rightarrow\) \(x-2\sqrt{xy}-y=2\sqrt{xy}\) \(\Leftrightarrow\) \(x-y=4\sqrt{xy}\)
\(\Leftrightarrow\) A = \(\dfrac{2\sqrt{xy}}{4\sqrt{xy}}=\dfrac{1}{2}\)
không biết sai chỗ nào ??? sao bài làm lại trái với câu hỏi thế này ???
a) Bạn dư sức làm.
b) \(A=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+1-\dfrac{2x+\sqrt{x}}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}\cdot\left(x\sqrt{x}+1\right)}{x-\sqrt{x}+1}+1-\dfrac{2x+\sqrt{x}}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}\cdot\left(\sqrt{x}+1\right)\cdot\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+1-\dfrac{2x+\sqrt{x}}{\sqrt{x}}\)
\(=\sqrt{x}\cdot\left(\sqrt{x}+1\right)+1-\dfrac{2x+\sqrt{x}}{\sqrt{x}}\)
\(=x+\sqrt{x}+1-\dfrac{2x+\sqrt{x}}{\sqrt{x}}\)
\(=\dfrac{x\sqrt{x}+x+\sqrt{x}-\left(2x+\sqrt{x}\right)}{\sqrt{x}}\)
\(=\dfrac{x\sqrt{x}+x+\sqrt{x}-2x-\sqrt{x}}{\sqrt{x}}\)
\(=\dfrac{x\sqrt{x}-x}{\sqrt{x}}\)
\(=\dfrac{\left(x\sqrt{x}-x\right)\sqrt{x}}{x}\)
\(=\dfrac{x\cdot\left(\sqrt{x}-1\right)\sqrt{x}}{x}\)
\(=\left(\sqrt{x}-1\right)\sqrt{x}\)
\(=x-\sqrt{x}\)