Giải pt
a) (x+1)^4+(x-3)^4=82
b) (x-2,5)^4+(x-1,5)^4=1
Giúp mk với ạ. Mk cảm ơn nhìu >_<
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+4\right)\left(x+6\right)\left(x-2\right)\left(x-12\right)=25x^2\)
\(\Leftrightarrow\left(x+3\right)\left(x+8\right)\left(x^2-15x+24\right)=0\)
\(x^4-8x^3+21x^2-24x+9=0\)
\(\Leftrightarrow\left(x^2-3x+3\right)\left(x^2-5x+3\right)=0\)
\(\Leftrightarrow\left(x-\frac{5+\sqrt{13}}{2}\right)\left(x-\frac{5-\sqrt{13}}{2}\right)=0\) (vì \(x^2-3x+3=\left(x-\frac{3}{2}\right)^2+0,75>0\))
\(\Rightarrow\orbr{\begin{cases}x=\frac{5+\sqrt{13}}{2}\\x=\frac{5-\sqrt{13}}{2}\end{cases}}\)
1)x^4+x^2-6x+1=0>>>x^4+4x^2+4-3x^2-6x-3=0>>>(x^2+2)^2=3(x-1)^2.
>>Sau đó giải bt.
2)Đặt x^2-x+1=a;x+1=b thì:x^3+1=ab.
Pt:2a+5b^2+14ab=0(tự giải nha)
Bài 1:
a: \(A=-\left|x-\dfrac{4}{9}\right|+\dfrac{7}{33}\le\dfrac{7}{33}\forall x\)
Dấu '=' xảy ra khi x=4/9
b: \(B=-\left|x+\dfrac{11}{9}\right|+\dfrac{101}{90}\le\dfrac{101}{90}\forall x\)
Dấu '=' xảy ra khi x=-11/9
Bài 2:
=>2x-8/33=0 và 3y+7/45=0
=>2x=8/33 và 3y=-7/45
=>x=8/66=4/33 và y=-7/135
\(1.\\ A=\sqrt{\left(2+\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\\ =\left|2+\sqrt{3}\right|+\left|2-\sqrt{3}\right|\\ =2+\sqrt{3}+2-\sqrt{3}=4\)
\(2.\\a.\\ P=3x-\sqrt{\left(x-5\right)^2}=3x-\left|x-5\right|\\ b.\\ x=2\Rightarrow P=3\)
\(3.\\ M=\dfrac{\sqrt{\left(x-1\right)^2}}{x-1}=\dfrac{\left|x-1\right|}{x-1}\)
\(\cdot x>1\Rightarrow M=1\\ \cdot x=1\Rightarrow M=0\\\cdot x< 1\Rightarrow M=-1\)
B1.
Ta có:A\(=\sqrt{3+4\sqrt{3}+4}+\sqrt{3-4\sqrt{3}+4}\)
\(=\sqrt{\left(\sqrt{3}+2\right)^2}+\sqrt{\left(\sqrt{3}-2\right)^2}\)
\(=\sqrt{3}+2+\sqrt{3}-2=2\sqrt{3}\)
Vì bạn không viết công thức toán nên không rõ tử là x-3 hay 3, x-2 hay 2. Tương tự mẫu cũng vậy.
Bạn nên viết đề bằng công thức toán để được hỗ trợ tốt hơn.
a. 9x2 - 6x - 3 = 0
<=> 3(3x2 - 2x - 1) = 0
<=> 3(3x2 - 3x + x - 1) = 0
<=> \(3\left[3x\left(x-1\right)+\left(x-1\right)\right]=0\)
<=> 3(3x + 1)(x - 1) = 0
<=> \(\left[{}\begin{matrix}3x+1=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=1\end{matrix}\right.\)
b. (2x + 1)2 - 4(x + 2)2 = 9
<=> (2x + 1)2 - \(\left[2\left(x+2\right)\right]^2=9\)
<=> (2x + 1 - 2x - 4)(2x + 1 + 2x + 4) = 9
<=> -3(4x + 5) = 9
<=> 4x + 5 = -3
<=> 5 + 3 = -4x
<=> -4x = 8
<=> -x = 2
<=> x = -2
a) \(\Leftrightarrow\left(9x^2-6x+1\right)-4=0\)
\(\Leftrightarrow\left(3x-1\right)^2-4=0\)
\(\Leftrightarrow3\left(x-1\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
b) \(\Leftrightarrow4x^2+4x+1-4x^2-16x-16=9\)
\(\Leftrightarrow12x=-24\Leftrightarrow x=-2\)
c) \(\Leftrightarrow3x^2-6x+3-3x^2+15x=21\)
\(\Leftrightarrow9x=18\Leftrightarrow x=2\)
d) \(\Leftrightarrow x^2+6x+9-x^2-4x+32=1\)
\(\Leftrightarrow2x=-40\Leftrightarrow x=-20\)
1, \(x^4-19x^2-10x+8=0\)
\(\Leftrightarrow\left(x+4\right)\left(x^3-4x^2-3x+2\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x+1\right)\left(x^2-5x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\\x^2-5x+2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x_1=-4\\x_2=-1\end{matrix}\right.\)
hoặc \(x^2-5x+2=0\)
\(\Rightarrow\Delta=17\left(CT:b^2-4ac\right)\)
\(\Rightarrow\left[{}\begin{matrix}x_3=\dfrac{5+\sqrt{17}}{2}\\x_4=\dfrac{5-\sqrt{17}}{2}\end{matrix}\right.\)
Vậy pt có 4 no là...........