K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2017

A=\(\frac{2018}{2017^2+1}+\frac{2018}{2017^2+2}+..........+\frac{2018}{2017^2+2017}\)

>\(\frac{2018}{2017^2+2017}+\frac{2018}{2017^2+2017}+........+\frac{2018}{2017^2+2017}\)

\(=\frac{2018}{2017^2+2017}.2017=\frac{2018.2017}{2017\left(2017+1\right)}=1\)                                  (1)

Lại có:A<\(\frac{2018}{2017^2+1}+\frac{2018}{2017^2+1}+.........+\frac{2018}{2017^2+1}\)

\(=\frac{2018}{2017^2+1}.2017=\frac{2018.2017}{2017^2+1}=\frac{2017.\left(2017+1\right)}{2017^2+1}\)

\(=\frac{2017^2+2017}{2017^2+1}=\frac{2017^2+1+2016}{2017^2+1}=1+\frac{2016}{2017^2+1}< 2\)                 (2)

Từ (1) và (2) suy ra:1 < A < 2

Vậy A không phải là số nguyên

18 tháng 6 2018

vui nhi

12 tháng 3 2018

hình như cái này đâu phải toán lớp 5 đâu bạn

12 tháng 3 2018

nhầm toán lớp 6

Chữa đề \(\frac{2017}{4038}< A< \frac{2017}{2018}\)

Ta có: \(A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2017.2018}\)

\(\Leftrightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(\Leftrightarrow A< 1-\frac{1}{2018}=\frac{2017}{2018}\)(1)

Lại có: \(A>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\)

\(\Leftrightarrow A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\)

\(\Leftrightarrow A>\frac{1}{2}-\frac{1}{2019}=\frac{2017}{4038}\)(2) 

Từ (1) và (2) => đpcm

11 tháng 7 2018

Áp dụng BĐT Svác-xơ ta có:

\(\frac{2017}{\sqrt{2018}}+\frac{2018}{\sqrt{2017}}\ge\frac{\left(\sqrt{2017}+\sqrt{2018}\right)^2}{\sqrt{2017}+\sqrt{2018}}=\sqrt{2017}+\sqrt{2018}\)

do  \(\frac{2017}{\sqrt{2018}}\ne\frac{2018}{\sqrt{2017}}\)nên dấu "=" không xảy ra

Vậy  \(\frac{2017}{\sqrt{2018}}+\frac{2018}{\sqrt{2017}}>\sqrt{2017}+\sqrt{2018}\)

15 tháng 10 2017

Đơn giản mà.

Đặt biểu thức trên là A

+ Nếu n chẵn (mà 20182017 là số chẵn)  => n + 20182017 là số chẵn => A chia hết cho 2

+ Nếu n lẻ (mà 20172018 là số lẻ)  => n + 20172018 là số chẵn => A chia hết cho 2

Vậy với mọi n thuộc N thì A chia hết cho 2

27 tháng 11 2017

Ta có : a không chia hết cho 2 nên a lẻ

Do đó: a^2 _ lẻ

Tương tự:b^2_lẻ

Do đó: a^2+b^2_Chẵn  (vì lẻ +lẻ = chẵn)

Nên   : a^2+b^2__Chẵn

\(A=\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2015}\)

\(=\left(1-\frac{1}{2016}\right)+\left(1-\frac{1}{2017}\right)+\left(1-\frac{1}{2018}\right)+\left(1+\frac{3}{2015}\right)\)

\(=1-\frac{1}{2016}+1-\frac{1}{2017}+1-\frac{1}{2018}+1+\frac{1}{2015}+\frac{1}{2015}+\frac{1}{2015}\)

\(=\left(1+1+1+1\right)+\left(\left(\frac{1}{2015}-\frac{1}{2016}\right)+\left(\frac{1}{2015}-\frac{1}{2017}\right)+\left(\frac{1}{2015}-\frac{1}{2018}\right)\right)\)

\(=4+\left(\frac{1}{2015}-\frac{1}{2016}\right)+\left(\frac{1}{2015}-\frac{1}{2017}\right)+\left(\frac{1}{2015}-\frac{1}{2018}\right)\)

Vì \(\frac{1}{2015}>\frac{1}{2016};\frac{1}{2015}>\frac{1}{2017};\frac{1}{2015}>\frac{1}{2018}\)

\(\Rightarrow\frac{1}{2015}-\frac{1}{2016}>0;\frac{1}{2015}-\frac{1}{2017}>0;\frac{1}{2015}-\frac{1}{2018}>0\)

\(\Rightarrow\left(\frac{1}{2015}-\frac{1}{2016}\right)+\left(\frac{1}{2015}-\frac{1}{2017}\right)+\left(\frac{1}{2015}-\frac{1}{2018}\right)>0\)

\(\Rightarrow4+\left(\frac{1}{2015}-\frac{1}{2016}\right)+\left(\frac{1}{2015}-\frac{1}{2017}\right)+\left(\frac{1}{2015}-\frac{1}{2018}\right)>4\)

\(\Rightarrow A>4\left(dpcm\right)\)