K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2018

n chia hết cho 3 \(\Rightarrow\)n^3 nà n^2  chia hết cho 9

   Mà 3 chia 9 dư 3 \(\Rightarrow\)A chia 9 dư 3

                              \(\Rightarrow\)A không chia hết cho 9(đpcm)

6 tháng 1 2021

mong mọi người giúp

6 tháng 1 2021

Ủa cái này có gì đâu:vv

Ta có: \(n⋮3\Rightarrow\left\{{}\begin{matrix}n^2⋮9\\n^3⋮9\end{matrix}\right.\) \(\Rightarrow n^3+n^2⋮9\)

Mà 3\(⋮̸9\) -> \(n^3+n^2+3⋮̸9\)

-> Đpcm

 

 

29 tháng 12 2023

A = n3 + n2 + 3

   n ⋮ 3⇒ n2 ⋮ 3

⇒ n2 ⋮ 32 (Tính chất của một số chính phương)

⇒ n2 ⋮ 9 

 ⇒  n2.n ⋮ 9

⇒n2.n + n2 ⋮ 9; mà  3 không chia hết cho 9 

⇒ n2.n + n2 + 3 không chia hết cho 9

10 tháng 11 2015

a) Nếu n = 5k => n(n+5) = 5k.(5k + 5) = 25k(k+1) chia hết cho 25

Nếu n = 5k +1 => n(n + 5) = (5k + 1).(5k+6) = 5k.5k + 5k.6 + 1.5k + 6 = (25k2 + 35k) + 6 không chia hết cho 5

Nếu n = 5k + 2 => n(n + 5) = (5k + 2)(5k + 7) = (25k2 + 35k + 10k) + 14 không chia hết cho 5

Nếu n = 5k + 3 => n(n + 5) = (5k + 3)(5k + 8) = (25k+ 55k) + 24 không chia hết cho 5

Nếu n = 5k + 4 => n(n + 5) = (5k + 4).(5k + 9) = (25k2 + 45k + 20k) + 36 không chia hết cho 5

Vậy với mọi n thì n(n+5) hoặc chia hết cho 25 hoặc không chia hết cho 5

b,c tương tự:

15 tháng 11 2014

d) Ta có: n + 6 chia hết cho n+1

              n+1 chia hết cho n+1

=> [(n+6) - (n+1)] chia hết cho n+1

=> (n+6 - n - 1) chia hết cho n + 1

=> 5 chia hết cho n+1

=> n+1 thuộc { 1; 5 }

Nếu n+1 = 1 thì n = 1-1=0

Nếu n+1=5 thì n= 5-1=4.

Vậy n thuộc {0;4}

15 tháng 11 2014

e) Ta có: 2n+3 chia hết cho n-2 (1)

              n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)

Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2

=> (2n+3 - 2n +4) chia hết cho n-2

=> 7 chia hết cho n-2

Sau đó xét các trường hợp tương tự như phần d.

11 tháng 10 2023

n là số tự nhiên không chia hết cho 3

=> \(\left[{}\begin{matrix}n=3k+1\\n=3k+2\end{matrix}\right.\)

+) n=3k+1

\(n^2+2=\left(3k+1\right)^2+2=9k^2+6k+3⋮3\)

+) n=3k+2

\(n^2+2=\left(3k+2\right)^2+2=9k^2+6k+6⋮3\)

=> Với mọi số tự nhiên n không chia hết cho 3 thì n2 +2 chia hết cho 3

12 tháng 10 2023

Mọi người giúp mik nhé

câu 1. tìm số tự nhiên x sao cho 34* chia hết cho 3 mà không chia hết cho 9.câu 2. tìm tập hợp các số tự nhiên n vừa chia hết cho 2 vừa chia hết cho 5và 136<n<182câu 3. cho tổng A=12+15+21+x(x thuộc n). tìm x để A chia hết cho 3câu 4. khi chia số tự nhiên a cho 12 được số dư là 10. hỏi a có chia hết cho 2 khôngcâu 5. khi chia số tự nhiên  a cho 12 ta được số dư là 9. hổi a có chia hết cho 3 không câu 6. tìm...
Đọc tiếp

câu 1. tìm số tự nhiên x sao cho 34* chia hết cho 3 mà không chia hết cho 9.

câu 2. tìm tập hợp các số tự nhiên n vừa chia hết cho 2 vừa chia hết cho 5và 136<n<182

câu 3. cho tổng A=12+15+21+x(x thuộc n). tìm x để A chia hết cho 3

câu 4. khi chia số tự nhiên a cho 12 được số dư là 10. hỏi a có chia hết cho 2 không

câu 5. khi chia số tự nhiên  a cho 12 ta được số dư là 9. hổi a có chia hết cho 3 không 

câu 6. tìm số tự nhiên có 2 chữ số, các chữ số giống nhau, biết số đó chia hết cho 2, còn chia cho 5 thì dư4

câu 7. chứng minh rằng ab+ba chia hết cho 11

         chứng minh aa-a-a chia hết cho 9

câu 8. tìm số tự nhiên n biết

        a)2^n:4=16        b)6*2^n+3*2^n=9*2^9               c)25 bé hơn hoặc bằng5^n bé hơn 3125

câu 9. chứng tỏ; 2^15+4^24 chia hết cho 2

câu 10. chứng tỏ rằng nếu (ab+cd)chia hết cho 99

(em sẽ like cho bác nào xong 10 câu nhanh nhất, ghi cả cách làm nữa)

0
23 tháng 10 2016

Linh ơi bài này ở đâu thế

23 tháng 10 2016

bài này ở toán buổi chiều

21 tháng 10 2015

2,

+ n chẵn

=> n(n+5) chẵn 

=> n(n+5) chia hết cho 2

+ n lẻ

Mà 5 lẻ

=> n+5 chẵn => chia hết cho 2

=> n(n+5) chia hết cho 2

KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N

21 tháng 10 2015

3, 

A = n2+n+1 = n(n+1)+1

a, 

+ Nếu n chẵn

=> n(n+1) chẵn 

=> n(n+1) lẻ => ko chia hết cho 2

+ Nếu n lẻ

Mà 1 lẻ

=> n+1 chẵn

=> n(n+1) chẵn

=> n(n+1)+1 lẻ => ko chia hết cho 2

KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)

b, + Nếu n chia hết cho 5

=> n(n+1) chia hết cho 5

=> n(n+1)+1 chia 5 dư 1

+ Nếu n chia 5 dư 1

=> n+1 chia 5 dư 2

=> n(n+1) chia 5 dư 2

=> n(n+1)+1 chia 5 dư 3

+ Nếu n chia 5 dư 2

=> n+1 chia 5 dư 3

=> n(n+1) chia 5 dư 1

=> n(n+1)+1 chia 5 dư 2

+ Nếu n chia 5 dư 3

=> n+1 chia 5 dư 4

=> n(n+1) chia 5 dư 2

=> n(n+1)+1 chia 5 dư 3

+ Nếu n chia 5 dư 4

=> n+1 chia hết cho 5

=> n(n+1) chia hết cho 5

=> n(n+1)+1 chia 5 dư 1

KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)