K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2015

vui lòng viết dấu để mình trả lời

11 tháng 12 2022

a: Xét (O) có

ΔABC nội tiếp

AC là đường kính

Do đó: ΔABC vuông tại B

Xét (O) có

ΔAFC nội tiêp

AC là đường kính

Do đó: ΔAFC vuông tại F

Xét ΔHBA vuông tại B và ΔHFC vuông tại F có

góc BHA=góc FHC

DO đó: ΔHBA đồng dạng với ΔHFC

=>HB/HF=HA/HC

=>HB*HC=HF*HA

b: Kẻ EG vuông góc với DA

Xet tứ giác EDHA có

ED//HA

EA//HD

Do đó: EDHA là hình bình hành

=>EA=DH

=>ΔEAG=ΔHDB

=>AG=BD=2AB

=>B là trung điểm của AG

=>BG=GD

=>ΔEBD cân tại E

26 tháng 5 2016

Để mình hướng dẫn vậy : 

a) Bạn tự chứng minh

b) Vì I là trung điểm của PQ nên I cũng là trung điểm của AM. Gọi I' là giao điểm của OE và AM , chứng minh tam giác AFI' = tam giác MEI' rồi suy ra AI' = I'M=> I' trùng với I => đpcm

c) Bạn chứng minh tam giác MEA đều rồi => góc MAE = AEM = POM rồi tiếp tục suy ra OMP = OEA => tam giác đồng dạng. 

26 tháng 5 2016

Để mình hướng dẫn vậy : 
a) Bạn tự chứng minh
b) Vì I là trung điểm của PQ nên I cũng là trung điểm của AM. Gọi I' là giao điểm của OE và AM , chứng minh tam giác AFI' = tam giác MEI' rồi suy ra AI' = I'M=> I' trùng với I => đpcm
c) Bạn chứng minh tam giác MEA đều rồi => góc MAE = AEM = POM rồi tiếp tục suy ra OMP = OEA => tam giác đồng dạng. 

27 tháng 3 2019

a, xét tam giác BDM và tam giác CEM có:

              BM=CM(gt)

             \(\widehat{BMD}\)=\(\widehat{CME}\)(vì đối đỉnh)

\(\Rightarrow\)tam giác BDM=tam giác CEM( CH-GN)

b, xét tam giác BEM và tam giác CDM có

                    BM=CM

                   \(\widehat{CMD}\)=\(\widehat{BME}\)(đối đỉnh)

                   MD=ME(theo câu a)

\(\Rightarrow\)\(\Delta\)BEM=\(\Delta\)CDM(c.g.c)

\(\Rightarrow\)\(\widehat{MCD}\)=\(\widehat{MBE}\) mà 2 góc này ở vị trí so le trong nên BE//CD

27 tháng 3 2019

c) Xét tam giác ABM có: MH vuông AB, BD vuông AM

Mà BD cắt MH tại I

=> I là trực tâm

Gọi J là giao của AI và BC khi đó:

AJ vuông BC

Xét 2 tam giác vuông AJM vàCEM có:

AM=MC(=1/2BC)( vì tam giác ABC vuông thì trung tuyến bằng 1/2 cạnh huyền)

góc IMA=góc EMC

=> Tam giác ẠM=tam giác CEM

=> \(\widehat{JAM}=\widehat{ECM}\) mặt khác  MA=MC=> tam giác MAC cân => \(\widehat{MAN}=\widehat{MCN}\)

từ đó suy ra \(\widehat{IAN}=\widehat{ECN}\)

Gọi K là giao điểm của AI và CE 

=> tam giác KAC cân

=> KA=KC

=> K nằm trên đường trung trực AC

Mặc khác MN là đường cao của tam giác cân MAC

=> MN là đường trung trực của AC

=> MN qua K

vậy MN, AI và CE đồng quy tại K

=> 

22 tháng 10 2019

giup mik i

moi nguoi

please