Tìm GTNN, GTLN của hàm số y= 2sin2x + 3cosx -1 trên đoạn \(\left[\dfrac{-\pi}{3};\dfrac{2\pi}{3}\right]\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(y=3-4sin^2x.cos^2x=3-sin^22x\)
Đặt \(sin2x=t\left(t\in\left[-1;1\right]\right)\).
\(\Rightarrow y=f\left(t\right)=3-t^2\)
\(\Rightarrow y_{min}=minf\left(t\right)=2\)
\(y_{max}=maxf\left(t\right)=3\)
a, Đồ thị hàm số \(y=cosx\): \(\left(A=\left(-\dfrac{\pi}{2};0\right);B=\left(\dfrac{\pi}{2};0\right)\right)\)
Dựa vào đồ thị ta có \(\left\{{}\begin{matrix}y_{min}=0\\y_{max}=1\end{matrix}\right.\)
b, Đồ thị hàm số \(y=sinx\): \(\left(A=\left(-\dfrac{\pi}{2};-1\right);A=\left(\dfrac{\pi}{2};1\right)\right)\)
`TXĐ: R`
Ta có: `-1 <= sin(x+ \pi/3) <= 1`
`<=>0 <= sin^4 (x+\pi/3) <= 1`
`<=>2 <= y <= 3`
`=>y_[mi n]=2<=>sin(x +\pi/3)=0<=>x= -\pi/3+k\pi` `(k in ZZ)`
`y_[max]=3<=>sin(x +\pi/3)=1<=>x=\pi/6 +k2\pi` `(k in ZZ)`
2.
$y=\sin ^4x+\cos ^4x=(\sin ^2x+\cos ^2x)^2-2\sin ^2x\cos ^2x$
$=1-\frac{1}{2}(2\sin x\cos x)^2=1-\frac{1}{2}\sin ^22x$
Vì: $0\leq \sin ^22x\leq 1$
$\Rightarrow 1\geq 1-\frac{1}{2}\sin ^22x\geq \frac{1}{2}$
Vậy $y_{\max}=1; y_{\min}=\frac{1}{2}$
3.
$0\leq |\sin x|\leq 1$
$\Rightarrow 3\geq 3-2|\sin x|\geq 1$
Vậy $y_{\min}=1; y_{\max}=3$
\(y=4cos^2\left(\dfrac{x}{2}-\dfrac{\pi}{12}\right)-7=2\left[cos\left(x-\dfrac{\pi}{6}\right)+1\right]-7=2cos\left(x-\dfrac{\pi}{6}\right)-5\)
Đặt \(x-\dfrac{\pi}{6}=t\Rightarrow t\in\left[-\dfrac{\pi}{6};\dfrac{5\pi}{6}\right]\)
\(\Rightarrow y=2cost-5\)
Do \(t\in\left[-\dfrac{\pi}{6};\dfrac{5\pi}{6}\right]\Rightarrow cost\in\left[-\dfrac{\sqrt{3}}{2};1\right]\)
\(\Rightarrow y\in\left[-5-\sqrt{3};-3\right]\)
\(y_{max}=-3\) khi \(t=0\) hay \(x=\dfrac{\pi}{6}\)
\(y_{min}=-5-\sqrt{3}\) khi \(y=\dfrac{5\pi}{6}\) hay \(x=\pi\)
Đặt \(sinx=t\left(t\in\left[-1;1\right]\right)\).
\(\Rightarrow y=f\left(t\right)=-2t^2+3t-1\)
\(\Rightarrow y_{min}=min\left\{f\left(-1\right);f\left(1\right);f\left(\dfrac{3}{4}\right)\right\}=f\left(-1\right)=-6\)
\(y_{max}=max\left\{f\left(-1\right);f\left(1\right);f\left(\dfrac{3}{4}\right)\right\}=f\left(\dfrac{3}{4}\right)=\dfrac{1}{8}\)