cho hai đường thẳng AB và CD cắt nhau tại O.Vẽ các tia OM và ON lần lượt là các tia phân giác của các góc AOD và BOD.Tính số đo góc MON
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có O 1 ^ = O 2 ^ = 1 2 . B O C ^ ; O 3 ^ = O 4 ^ = 1 2 . A O D ^
Mặt khác B O C ^ = A O D ^ ( Đối đỉnh) nên O 1 ^ = O 3 ^ . Vậy ta có:
M O N ^ = O ^ 2 + A O C ^ + O 3 ^ = O ^ 2 + A O C ^ + O 1 ^ = A O B ^ = 180 0
Ta có:
AB và CD cắt nhau tại O.
=> OA đối OB; OC đối OD.
=> \(\widehat{AOD}\) và \(\widehat{COB}\) là hai góc đối đỉnh.
=> \(\widehat{AOD}=\widehat{COB}\)
Mà: OM là phân giác \(\widehat{AOD}\)
ON là phân giác \(\widehat{COB}\)
=> +) \(\widehat{CON}=\widehat{NOB}=\frac{1}{2}\widehat{COB}\) (1)
+) \(\widehat{AOM}=\widehat{MOD}=\frac{1}{2}\widehat{AOD}\) (2)
Từ (1) và (2) => \(\widehat{CON}=\widehat{NOB}=\widehat{AOM}=\widehat{MOD}\)
Mà AB cắt CD tại O
=> CD cắt MN tại O
=> CON đối đỉnh MOD
=> OC đối OD
OM đối ON
Vậy OM đối ON(đpcm)
đáp án:
Ta có:
AB và CD cắt nhau tại O.
=> OA đối OB; OC đối OD.
=> ˆAODAOD^ và ˆCOBCOB^ là hai góc đối đỉnh.
=> ˆAOD=ˆCOBAOD^=COB^
Mà: OM là phân giác ˆAODAOD^
ON là phân giác ˆCOBCOB^
=> +) ˆCON=ˆNOB=12ˆCOBCON^=NOB^=12COB^ (1)
+) ˆAOM=ˆMOD=12ˆAODAOM^=MOD^=12AOD^ (2)
Từ (1) và (2) => ˆCON=ˆNOB=ˆAOM=ˆMODCON^=NOB^=AOM^=MOD^
Mà AB cắt CD tại O
=> CD cắt MN tại O
=> CON đối đỉnh MOD
=> OC đối OD
OM đối ON
Vậy OM đối ON(đpcm)
Theo đề bài, vì xx' vuông góc với yy' tại O nên góc xOy và góc x'Oy kề bù (180 độ).
Do đó, góc xOy=yOx'=90 độ
Mà OM là tia phân giác của góc xOy; ON là tia phan giác của góc yOx' nên góc MOy=45 độ; góc yON=45 độ.
\(\Rightarrow\)Góc MON=45+45=90 độ.
Giải
_ Ta có \(\widehat{xOy}=\widehat{x'Oy'}=40^0\)( đối đỉnh) => \(\widehat{xOm}=\widehat{mOy}=\widehat{y'On}=\widehat{nOx'}=\frac{40^0}{2}=20^0\)
_ \(\widehat{x'Oy}=\widehat{xOy'}=180^0-40^0=140^0\)