Tìm x,y ϵ Z thỏa mãn: \(x^2y^2-x^2-8y^2=2xy\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}a=x\\b=2y\\c=3z\end{cases}}\Rightarrow a+b+c=3\)
\(Q=\frac{11b^3-a^3}{ab+4b^2}+\frac{11c^3-b^3}{bc+4c^2}+\frac{11a^3-c^3}{ca+4a^2}\)
Cần tìm \(\beta;\gamma\) sau cho \(\frac{11b^3-a^3}{ab+4b^2}\le\gamma b+\beta a\)
\(\Leftrightarrow\frac{11.\left(\frac{b}{a}\right)^3-1}{\frac{b}{a}+4\left(\frac{b}{a}\right)^2}\le\gamma\frac{b}{a}+\beta\)
\(\Leftrightarrow\frac{11t^3-1}{t+4t^2}\le\gamma t+\beta\text{ }\left(t=\frac{b}{a}\right)\)
Dự đoán Q max khi a = b = c nên t = 1;
Tới đây dùng pp hệ số bất định để tìm ra \(\gamma=3;\text{ }\beta=-1\)
Vậy ta cần chứng minh \(\frac{11b^3-a^3}{ab+4b^2}\le3b-a\Leftrightarrow-\frac{\left(a+b\right)\left(a-b\right)^2}{ab+4b^2}\le0\)
Bạn coi lại đề, nhìn 2 vế của điều kiên đều là \(\sqrt{x+2}\) có vẻ sai sai rồi đó