K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2017

Sao lại là tìm d ? Phải là tìm n chứ

26 tháng 4 2020

a) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 \(⋮\)d; 14n+3 \(⋮\)d

=> (14n+3) -(21n+4) \(⋮\)d

=> 3(14n+3) -2(21n+4) \(⋮\)d

=> 42n+9 - 42n -8 \(⋮\)d

=> 1\(⋮\)d

=> 21n+4/14n+3 là phân số tối giản

Vậy...

c) Gọi ƯC(21n+3; 6n+4) =d; 21n+3/6n+4 =A => 21n+3 \(⋮\)d; 6n+4 \(⋮\)d

=> (6n+4) - (21n+3) \(⋮\)d

=> 7(6n+4) - 2(21n+3) \(⋮\)d

=> 42n +28 - 42n -6\(⋮\)d

=> 22 \(⋮\)cho số nguyên tố d

\(\in\){11;2}

Nếu phân số A rút gọn được cho số nguyên tố d thì d=2 hoặc d=11

Nếu A có thể rút gọn cho 2 thì 6n+4 luôn luôn chia hết cho 2. 21n+3 chia hết cho 2 nếu n là số lẻ

Nếu A có thể rút gọn cho 11 thì 21n+3 \(⋮\)11 => 22n -n +3\(⋮\)11 => n-3 \(⋮\)11 Đảo lại với n=11k+3 thì 21n+3 và 6n+4 chia hết cho 11

Vậy với n là lẻ hoặc n là chẵn mà n=11k+3 thì phân số đó rút gọn được

DD
15 tháng 7 2021

Đặt \(d=\left(21n+4,14n+3\right)\)

Suy ra 

\(\hept{\begin{cases}21n+4⋮d\\14n+3⋮d\end{cases}}\Rightarrow3\left(14n+3\right)-2\left(21n+4\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm.

) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản

4 tháng 3 2022

-Gọi \(ƯCLN\left(14n+3;21n+4\right)=a\).

-Có: \(\left(14n+3\right)⋮a\)

\(\Rightarrow\left[3.\left(14n+3\right)\right]⋮a\)

\(\Rightarrow\left(42n+9\right)⋮a\) (1)

-Có: \(\left(21n+4\right)⋮a\)

\(\Rightarrow\left[2\left(21n+4\right)\right]⋮a\)

\(\Rightarrow\left(48n+8\right)⋮a\) (2)

-Từ (1) và (2) suy ra:

\(\left[\left(48n+9\right)-\left(48n+8\right)\right]⋮a\)

\(\Rightarrow1⋮a\)

\(\Rightarrow a\in\left\{1;-1\right\}\)

-Vậy \(\dfrac{14n+3}{21n+4}\) là phân số tối giản.

31 tháng 7 2016

gọi UCLN( 14n +3 , 21n +4 ) =d  (1)

=> 21n+4  và 14n+3 chia hết cho d => 21n+4 - 14n-3  chia hết cho d 

=> 7n+1 chia hết cho d =>( 7n+1 ). 2 chia hết cho d => 14n +2 chia hết cho d 

=> 14n+ 3 - 14n - 2 chia hết cho d =>1 chia hết cho d => d thuộc ước của 1 (2) 

từ (1) ,(2) => dpcm

9 tháng 4 2017

Gọi UCLN(14n+3,21n+4) =a

ta có :14n+3 chia hết cho a ; 21n+4 chia hết cho a

suy ra (21n+4) : 3 .2 chia hết cho a và 14n+3 chia hết cho a

suy ra 14n+2 chia hết cho a và 14n+3 chia hết cho a

suy ra (14n+3) - (14n+2) chia hết cho a

suy ra 14n+3 - 14n-2 chia hết cho a

 suy ra 1 chia hết cho a

và a thuộc U(1) = 1

Vậy 14n+3/14n+4 là phân số tối giản

chúc bạn học tốt

12 tháng 1 2022

Gọi ƯCLN 21n + 4 và 14n + 3 là d ( d ∈ N và d ≥ 1 )

Khi đó:  2 ( 21n + 4 ) ⋮ d  và 3 ( 14n + 3 ) ⋮ d

hay 42n + 8 ⋮ d    và 42n + 9 ⋮ d

Suy ra   42n + 9 - 42n + 8 ⋮ d   ⇒ 1 ⋮ d

Vậy d = 1 

Như vậy phân số \(\dfrac{21n+4}{14n+3}\) là phân số tối giản với n là số tự nhiên

Gọi d=UCLN(14n+3;21n+4)

\(\Leftrightarrow\left\{{}\begin{matrix}42n+9⋮d\\42n+8⋮d\end{matrix}\right.\Leftrightarrow1⋮d\Leftrightarrow d=1\)

Vậy: 14n+3/21n+4 là phân số tối giản

21 tháng 6 2020

Gọi d là ƯC(14n + 3 ; 21n + 5)

\(\Rightarrow\hept{\begin{cases}14n+3⋮d\\21n+5⋮d\end{cases}\Rightarrow}\hept{\begin{cases}3\left(14n+3\right)⋮d\\2\left(21n+5\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}42n+9⋮d\\42n+10⋮d\end{cases}}\)

=> ( 42n + 10 ) - ( 42n + 9 ) chia hết cho d

=> 42n + 10 - 42n - 9 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> ƯCLN(14n + 3 ; 21n + 5) = 1

=> \(\frac{14n+3}{21n+5}\)tối giản ( đpcm )

9 tháng 8 2023

Gọi \(\text{ƯCLN(21n+4,14n+3)}\) là \(\text{d}\)

\(\Rightarrow\) \(\text{21n+4 ⋮ d}\)

\(\text{14n+3 ⋮ d}\)

\(\Rightarrow\) \(\text{[3(14n+3)-2(21n+4) ⋮ d}\)

\(\Rightarrow\) \(\text{[42n+9-42n-8] ⋮ d}\)

\(\Rightarrow\) \(\text{1 ⋮ d}\)

\(\Rightarrow\) \(\text{d =1( đpcm )}\)

 

27 tháng 4 2017

Gọi ƯCLN(21n+4,14n+3)=d

=>21n+4\(⋮\)d =>42n+8\(⋮\)d (1)

=>14n+3\(⋮\)d =>42n+9\(⋮\)d (2)

Từ (1) và (2) => (42n+9)-(42n+8)\(⋮\)d =>1\(⋮\)d =>d=1 (vì d=ƯCLN) 

=> \(\frac{21n+4}{14n+3}\)là phân số tối giản, với mọi n\(\in\)  N (ĐCCM)

Vậy \(\frac{21n+4}{14n+3}\)là phân số tối giản với mọi n\(\in\)N