K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2018

\(3n+2⋮n-1\Leftrightarrow3n+2-3\left(n-1\right)⋮n-1\)

\(\Leftrightarrow5⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;5\right\}\Leftrightarrow n\in\left\{2;6\right\}\)

19 tháng 12 2018

\(\left(n+3\right)⋮\left(n+1\right)\Leftrightarrow\left(n+3\right)-\left(n+1\right)⋮\left(n+1\right)\)

\(\Leftrightarrow2⋮\left(n+1\right)\Leftrightarrow\left(n+1\right)\in\left\{1;2\right\}\Leftrightarrow n\in\left\{0;1\right\}\)

19 tháng 12 2018

Shitbo đúng đó !

21 tháng 11 2021

mình xin lỗi mình đánh máy sai câu hỏi như này

 A) n+7 chia hết cho n+2 ( với n khác 2 )

 B) 3n+1 chia hết cho 2n+3  

AH
Akai Haruma
Giáo viên
17 tháng 12 2023

Lời giải:

$n^3+3n+1\vdots n+1$

$\Rightarrow (n^3+1)+3n\vdots n+1$

$\Rightarrow (n+1)(n^2-n+1)+3(n+1)-3\vdots n+1$

$\Rightarrow (n+1)(n^2-n+4)-3\vdots n+1$

$\Rightarrow 3\vdots n+1$

$\Rightarrow n+1\in \left\{1; 3\right\}$ (do $n+1$ là stn) 

$\Rightarrow n\in \left\{0; 2\right\}$

19 tháng 12 2020

\(3n-3+5⋮n-1\)

\(\Leftrightarrow3\left(n-1\right)+5⋮n-1\)

có 3(n-1) chia hết cho n-1

\(\Rightarrow5⋮n-1\)

=> n-1 thuộc ước của 5

tức là:

n-1=5

n-1=-5

n-1=1

n-1=-1

19 tháng 12 2020

đến đấy mà không làm được thì a chịu đấy =)))))

6 tháng 9 2023

 Vì n là số tự nhiên không chia hết cho 2 hay 3 nên n có dạng \(6k+1\) hoặc \(6k+5\)

 Nếu \(n=6k+1\) thì hiển nhiên \(n^2-1⋮6\) và \(3n=18k+3\) chia 6 dư 3, suy ra \(4n^2+3n+5=4\left(n^2-1\right)+3n+9\) chia hết cho 6.

 Nếu \(n=6k+5\) thì \(n^2-1⋮6\) (cái này dễ cm nên mình không trình bày ở đây) và \(3n=18k+15\) chia 6 dư 3, suy ra \(4n^2+3n+5=4\left(n^2-1\right)+3n+9\) chia hết cho 6.

 Ta có đpcm.

6 tháng 9 2023

mk ko có hỉu

 

19 tháng 12 2018

ta có 10-2n\(⋮\)n-1

\(\Rightarrow\)12-(2n-2)\(⋮\)n-1

mà 2n-2\(⋮\)n-1

\(\Rightarrow\)12\(⋮\)n-1\(\Rightarrow\)n-1\(\in\)Ư(12)={\(\pm\)1;\(\pm\)2;\(\pm\)3;\(\pm\)4;\(\pm\)6;\(\pm\)12)


 

n-11-12-23-34-45-56-612-12
n203-14-25-36-47-513-11
12 tháng 12 2021

Theo bài ra, ta có 

3n +3 chia hết cho n

Mà 3n chia hết cho n

=> 3 chia hết cho n

Do đó: n \(\in\)Ư(3)

=> n \(\in\){ -1; 1; -3; 3}